精英家教网 > 高中数学 > 题目详情
10.设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x+a<0}.
(1)当a=-2时,求A∩B;
(2)若A∩B=A,求实数a的取值范围.

分析 (1)解不等式求出A,a=-2时化简集合B,根据交集的定义写出A∩B;
(2)根据A∩B=A得A⊆B,根据子集的定义写出实数a的取值范围.

解答 解:(1)A={x|2x2-7x+3≤0}={x|$\frac{1}{2}$≤x≤3},
当a=-2时,B={x|x-2<0}={x|x<2},
∴A∩B={x|$\frac{1}{2}$≤x<2};
(2)∵A∩B=A,∴A⊆B,
又B={x|x+a<0}={x|x<-a},
∴-a>3,
解得a<-3,
即实数a的取值范围是a<-3.

点评 本题考查了解不等式与集合的定义和运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知某空间几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{40}{3}$B.$\frac{34}{3}$C.$10+\frac{{4\sqrt{2}}}{3}$D.$6+\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{(x+1)(x+a)}{{x}^{2}}$为偶函数.
(1)求实数a的值;
(2)记集合E={y|y=f(x),x∈{-1,1,2}},λ=(lg 2)2+lg 2lg 5+lg 5-$\frac{1}{4}$,判断λ与E的关系;
(3)当x∈[$\frac{1}{m}$,$\frac{1}{n}$](m>0,n>0)时,若函数f(x)的值域为[2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.-150°的弧度数是(  )
A.-$\frac{5π}{6}$B.$\frac{4π}{3}$C.-$\frac{2π}{3}$D.-$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数$f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示,求:
(1)f(x)的表达式.
(2)f(x)的单调增区间.
(3)f(x)的最小值以及取得最小值时的x集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{a_n}{{{2^{n-1}}}}={3^{n+1}}$,则数列{an}的通项公式为${a_n}=\left\{\begin{array}{l}9({n=1})\\{6^n}\;\;({n≥2})\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈(-∞,0),则$a+\frac{1}{b},b+\frac{1}{a}$(  )
A.都不大于-2B.都不小于-2
C.至少有一个不大于-2D.至少有一个不小于-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$P(A)=\frac{3}{4}$,$P(B)=\frac{1}{4}$,$P(AB)=\frac{1}{2}$,则P(B|A)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\frac{i}{{\sqrt{7}+3i}}$=(  )
A.$\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$B.$\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$C.$-\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$D.$-\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$

查看答案和解析>>

同步练习册答案