精英家教网 > 高中数学 > 题目详情
20.$\frac{i}{{\sqrt{7}+3i}}$=(  )
A.$\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$B.$\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$C.$-\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$D.$-\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$

分析 利用复数的运算法则、共轭复数的应用即可得出.

解答 解:$\frac{i}{{\sqrt{7}+3i}}$=$\frac{i(\sqrt{7}-3i)}{(\sqrt{7}+3i)(\sqrt{7}-3i)}$=$\frac{3}{16}$+$\frac{\sqrt{7}}{16}$i.
故选:B.

点评 本题考查了复数的运算法则、共轭复数的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x+a<0}.
(1)当a=-2时,求A∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx等于(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列一段推理:若一条直线平行于平面,则这条直线平行于平面内所有直线.已知直线a?平面α,直线b?平面α,且a∥α,所以a∥b.上述推理的结论不一定是正确的,其原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|(x+1)(x-4)<0},B={x|x>2},则A∩B=(  )
A.(-1,4)B.(-1,2)C.(2,4)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=x{e^x}-\frac{m}{2}{x^2}-mx$,则函数f(x)在[1,2]上的最小值不可能为(  )
A.$e-\frac{3}{2}m$B.$-\frac{1}{2}m{ln^2}m$C.2e2-4mD.e2-2m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,且过点$({-1,\frac{3}{2}})$,椭圆C的右顶点为A.
(Ⅰ)求椭圆的C的标准方程;
(Ⅱ)已知过点$B({\frac{1}{2},0})$的直线交椭圆C于P,Q两点,且线段PQ的中点为R,求直线AR的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,$cosB=\frac{3}{5}$,AC=5,AB=6,则角C的正弦值为(  )
A.$\frac{24}{25}$B.$\frac{16}{25}$C.$\frac{9}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.现有3个命题:
P1:函数f(x)=lgx-|x-2|有2个零点
p2:?x∈($\frac{π}{6}$,$\frac{π}{2}$),sinx+$\sqrt{3}$cosx=$\sqrt{2}$
p3:若a+b=c+d=2,ac+bd>4,则 a、b、c、d中至少有1个为负数.
那么,这3个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案