精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=x{e^x}-\frac{m}{2}{x^2}-mx$,则函数f(x)在[1,2]上的最小值不可能为(  )
A.$e-\frac{3}{2}m$B.$-\frac{1}{2}m{ln^2}m$C.2e2-4mD.e2-2m

分析 f′(x)=ex+xex-m(x+1)=(x+1)(mex-1).对a分类讨论:当m≤$\frac{1}{e}$时,当e>m>$\frac{1}{e}$时,当m≥e时,利用导数研究函数的单调性极值与最值即可.

解答 解:f′(x)=ex+xex-m(x+1)=(x+1)(mex-1),
①当m≤$\frac{1}{e}$时,ex-m>0,由x≥-1,可得f′(x)≥0,此时函数f(x)单调递增.
∴当x=1时,函数f(x)取得最小值,f(1)=e-$\frac{3}{2}$m.
②当m≥e时,ex-m≤0,由x≥-1,可得f′(x)≤0,此时函数f(x)单调递减.
∴当x=2时,函数f(x)取得最小值,f(2)=2e2-4m.
③当e>m>$\frac{1}{e}$时,由ex-m=0,解得x=lnm.
当-1≤x<lnm时,f′(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,f′(x)>0,此时函数f(x)单调递增.
∴当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=-$\frac{m}{2}l{n}^{2}m$.
 故选:D.

点评 本题考查了利用导数研究函数的单调性与最值,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.数列{an}满足${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{a_n}{{{2^{n-1}}}}={3^{n+1}}$,则数列{an}的通项公式为${a_n}=\left\{\begin{array}{l}9({n=1})\\{6^n}\;\;({n≥2})\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=(x-3)ex在(0,+∞)上的零点个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2017年4月14日,某财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如表:
混凝土耐久性达标混凝土耐久性不达标总计
使用淡化海砂25t30
使用未经淡化海砂s
总计4060
(Ⅰ)根据表中数据,求出s,t的值;
(Ⅱ)利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下认为使用淡化海砂与混凝土耐久性是否达标有关?
参考数据:
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\frac{i}{{\sqrt{7}+3i}}$=(  )
A.$\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$B.$\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$C.$-\frac{3}{16}+\frac{{\sqrt{7}}}{16}i$D.$-\frac{3}{16}-\frac{{\sqrt{7}}}{16}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如图所示(x(吨)为买进蔬菜的质量,y(天)为销售天数):
x234567912
y12334568
(Ⅰ)根据上表数据在下列网格中绘制散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店准备一次性买进25吨,则预计需要销售多少天.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,x2+ax+a2≥0(a∈R),命题q:$?{x_0}∈{N^*}$,$2x_0^2-1≤0$,则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.?p)∨qD.?p)∧(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数a,b,c,d,e同时满足关系:a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则实数e的最大值为(  )
A.2B.$\frac{16}{5}$C.3D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC 中,a、b、c分别为内角 A、B、C 的对边,bsin A=(3b-c)sinB
(1)若2sin A=3sin B,且△ABC的周长为8,求c
(2)若△ABC为等腰三角形,求cos 2B.

查看答案和解析>>

同步练习册答案