精英家教网 > 高中数学 > 题目详情
15.在△ABC 中,a、b、c分别为内角 A、B、C 的对边,bsin A=(3b-c)sinB
(1)若2sin A=3sin B,且△ABC的周长为8,求c
(2)若△ABC为等腰三角形,求cos 2B.

分析 (1)由已知及正弦定理可求a+c=3b,2a=3b,联立即可解得c的值.
(2)由已知分类讨论可求a=c,由a+c=3b,可得b=$\frac{2}{3}$a,利用余弦定理可求cosB,进而利用二倍角的余弦函数公式即可计算得解.

解答 (本题满分为12分)
解:(1)∵bsin A=(3b-c)sinB,可得:ab=(3b-c)b,…2分
∴a=3b-c,即a+c=3b,…3分
∵2sinA=3sinB,
∴2a=3b,
∴a+b+c=4b=8,可得:b=2,解得a=c=3,…6分
(2)若a=b,则c=2b,
∴a+b=c,与三角形两边之和大于第三边矛盾,故a≠b,同理可得c≠b,…8分
∴a=c,
∵a+c=3b,可得b=$\frac{2}{3}$a,…9分
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{2{a}^{2}-(\frac{2a}{3})^{2}}{2{a}^{2}}$=$\frac{7}{9}$,…11分
∴cos2B=2cos2B-1=$\frac{17}{81}$…12分

点评 本题主要考查了正弦定理,余弦定理,二倍角的余弦函数公式在解三角形中的应用,考查了方程思想和分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=x{e^x}-\frac{m}{2}{x^2}-mx$,则函数f(x)在[1,2]上的最小值不可能为(  )
A.$e-\frac{3}{2}m$B.$-\frac{1}{2}m{ln^2}m$C.2e2-4mD.e2-2m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${(x+\frac{1}{x}+2)^5}$的展开式中,x2的系数是120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在(0,+∞)上的函数f(x)满足f(x)>2(x+$\sqrt{x}$)f′(x),其中f′(x)为f(x)的导函数,则下列不等式中,一定成立的是(  )
A.f(1)>$\frac{f(2)}{2}$>$\frac{f(3)}{3}$B.$\frac{f(1)}{2}$>$\frac{f(4)}{3}$>$\frac{f(9)}{4}$C.f(1)<$\frac{f(2)}{2}$<$\frac{f(3)}{3}$D.$\frac{f(1)}{2}$<$\frac{f(4)}{3}$<$\frac{f(9)}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.现有3个命题:
P1:函数f(x)=lgx-|x-2|有2个零点
p2:?x∈($\frac{π}{6}$,$\frac{π}{2}$),sinx+$\sqrt{3}$cosx=$\sqrt{2}$
p3:若a+b=c+d=2,ac+bd>4,则 a、b、c、d中至少有1个为负数.
那么,这3个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.己知复数z=$\frac{a+3i}{1+2i}$(a∈R,i是虚数单位)是纯虚数,则|z|为(  )
A.$\frac{3}{2}$B.$\frac{15}{2}$C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在区间(π,2π)内有零点,则ω的取值范围是(  )
A.($\frac{1}{4}$,$\frac{5}{8}$)∪($\frac{5}{4}$,+∞)B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.($\frac{1}{8}$,$\frac{1}{4}$)∪($\frac{5}{8}$,$\frac{5}{4}$)D.($\frac{1}{8}$,$\frac{1}{4}$)∪($\frac{5}{8}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点F(c,0)作圆x2+y2=a2的切线,切点为M.直线FM交抛物线y2=-4cx于点N,若$\overrightarrow{OF}+\overrightarrow{ON}=2\overrightarrow{OM}$(O为坐标原点),则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{5}$D.$1+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F为双曲线$\frac{x^2}{3a}-\frac{y^2}{a}=1({a>0})$的一个焦点,则点F到C的一条渐近线的距离为(  )
A.$\sqrt{a}$B.aC.$\sqrt{3}a$D.3a

查看答案和解析>>

同步练习册答案