精英家教网 > 高中数学 > 题目详情
3.定义在(0,+∞)上的函数f(x)满足f(x)>2(x+$\sqrt{x}$)f′(x),其中f′(x)为f(x)的导函数,则下列不等式中,一定成立的是(  )
A.f(1)>$\frac{f(2)}{2}$>$\frac{f(3)}{3}$B.$\frac{f(1)}{2}$>$\frac{f(4)}{3}$>$\frac{f(9)}{4}$C.f(1)<$\frac{f(2)}{2}$<$\frac{f(3)}{3}$D.$\frac{f(1)}{2}$<$\frac{f(4)}{3}$<$\frac{f(9)}{4}$

分析 由题意构造函数g(x)=$\frac{f(x)}{\sqrt{x}+1}$,再由导函数的符号判断出函数g(x)的单调性,由函数g(x)的单调性即可得出正确选项.

解答 解:构造函数g(x)=$\frac{f(x)}{\sqrt{x}+1}$,
则g′(x)=$\frac{f′(x)•(\sqrt{x}+1)-f(x)•\frac{1}{2\sqrt{x}}}{(\sqrt{x}+1)^{2}}$=$\frac{2(x+\sqrt{x})f′(x)-f(x)}{2\sqrt{2}x•(\sqrt{x}+1)^{2}}$,
∵在(0,+∞)上的函数f(x)满足f(x)>2(x+$\sqrt{x}$)f′(x),
∴g′(x)<0,
∴g(x)=$\frac{f(x)}{\sqrt{x}+1}$在(0,+∞)上单调递减,
∴g(1)>g(4)>g(9),
∴$\frac{f(1)}{1+1}$>$\frac{f(4)}{2+1}$>$\frac{f(9)}{3+1}$,
∴$\frac{f(1)}{2}$>$\frac{f(4)}{3}$>$\frac{f(9)}{4}$,
故选:B

点评 本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性的关系对不等式进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.2017年4月14日,某财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如表:
混凝土耐久性达标混凝土耐久性不达标总计
使用淡化海砂25t30
使用未经淡化海砂s
总计4060
(Ⅰ)根据表中数据,求出s,t的值;
(Ⅱ)利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下认为使用淡化海砂与混凝土耐久性是否达标有关?
参考数据:
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数a,b,c,d,e同时满足关系:a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则实数e的最大值为(  )
A.2B.$\frac{16}{5}$C.3D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某程序框图如图所示,若输入的t=4,则输出的k等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,边长为2的正方形ABFC和高为2的直角梯形ADEF所在的平面互相垂直,AF∩BC=O,DE=$\sqrt{2}$,ED∥AF,且∠DAF=90°.
(1)求证:DE⊥平面BCE;
(2)过O作OH⊥平面BEF,垂足为H,求三棱锥A-BCH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,若$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+$\sqrt{2}$,a1=8,则数列{an}的通项公式为(  )
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC 中,a、b、c分别为内角 A、B、C 的对边,bsin A=(3b-c)sinB
(1)若2sin A=3sin B,且△ABC的周长为8,求c
(2)若△ABC为等腰三角形,求cos 2B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合$A=\{x|{log_{\frac{1}{3}}}(4-x)>-1\}$,B={x|4x-1>8},若全集为实数集R,则A∩(∁RB)=(  )
A.$(-∞,\frac{5}{2}]$B.(2,4)C.$(\frac{5}{2},4)$D.(1,$\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)与函数g(x)是定义在同一区间上的两个函数,若函数y=f(x)-g(x)在次区间上有两个不同的零点,则称函数f(x),g(x)在此区间上是“交织函数”,若f(x)=4|x|-$\frac{9}{4}$与g(x)=2x+m在(-∞,+∞)上是“交织函数”,则m的取值范围为(  )
A.(-$\frac{9}{4}$,-2]B.[-1,0]C.(-∞,-2]D.(-$\frac{9}{4}$,+∞)

查看答案和解析>>

同步练习册答案