| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{5}+1}}{2}$ | C. | $\sqrt{5}$ | D. | $1+\sqrt{5}$ |
分析 说明M是FN的中点.设抛物线的焦点为F1,说明OM为△NF2F1的中位线.通过NF2⊥NF1,于是可得|NF|=2b,设P(x,y),推出 c-x=2a,利用双曲线定义结合勾股定理得 y2+4a2=4b2,然后求解离心率即可.
解答 解:∵若$\overrightarrow{OF}+\overrightarrow{ON}=2\overrightarrow{OM}$,∴M是FN的中点.
设抛物线的焦点为F1,则F1为(-c,0),也是双曲线的焦点.
∵OM为△NF2F1的中位线.|OM|=a,∴|NF1|=2 a.
∵OM⊥MF,
∴NF2⊥NF1,于是可得|NF|=2b,
设N(x,y),则 c-x=2a,
于是有x=c-2a,y2=-4c(c-2 a),过点F作x轴的垂线,点N到该垂线的距离为2a.
由勾股定理得 y2+4a2=4b2,即-4c(c-2a)+4 a2=4(c2-a2),
变形可得c2-a2=ac,两边同除以a2
有 e2-e-1=0,所以e=$\frac{1+\sqrt{5}}{2}$,负值已经舍去.
故选:B.
点评 本题考查双曲线的简单性质的应用,向量以及圆与双曲线的位置关系的综合应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{16}{5}$ | C. | 3 | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,\frac{5}{2}]$ | B. | (2,4) | C. | $(\frac{5}{2},4)$ | D. | (1,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${x^2}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{2}-\frac{y^2}{3}=1$ | C. | ${x^2}-\frac{y^2}{6}=1$ | D. | $\frac{x^2}{{\frac{3}{2}}}-\frac{y^2}{{\frac{7}{2}}}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{9}{4}$,-2] | B. | [-1,0] | C. | (-∞,-2] | D. | (-$\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1] | B. | [-1,+∞) | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com