精英家教网 > 高中数学 > 题目详情
4.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点F(c,0)作圆x2+y2=a2的切线,切点为M.直线FM交抛物线y2=-4cx于点N,若$\overrightarrow{OF}+\overrightarrow{ON}=2\overrightarrow{OM}$(O为坐标原点),则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{5}$D.$1+\sqrt{5}$

分析 说明M是FN的中点.设抛物线的焦点为F1,说明OM为△NF2F1的中位线.通过NF2⊥NF1,于是可得|NF|=2b,设P(x,y),推出 c-x=2a,利用双曲线定义结合勾股定理得 y2+4a2=4b2,然后求解离心率即可.

解答 解:∵若$\overrightarrow{OF}+\overrightarrow{ON}=2\overrightarrow{OM}$,∴M是FN的中点.
设抛物线的焦点为F1,则F1为(-c,0),也是双曲线的焦点.
∵OM为△NF2F1的中位线.|OM|=a,∴|NF1|=2 a.
∵OM⊥MF,
∴NF2⊥NF1,于是可得|NF|=2b,
设N(x,y),则 c-x=2a,
于是有x=c-2a,y2=-4c(c-2 a),过点F作x轴的垂线,点N到该垂线的距离为2a.
由勾股定理得 y2+4a2=4b2,即-4c(c-2a)+4 a2=4(c2-a2),
变形可得c2-a2=ac,两边同除以a2
有 e2-e-1=0,所以e=$\frac{1+\sqrt{5}}{2}$,负值已经舍去.
故选:B.

点评 本题考查双曲线的简单性质的应用,向量以及圆与双曲线的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设实数a,b,c,d,e同时满足关系:a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则实数e的最大值为(  )
A.2B.$\frac{16}{5}$C.3D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC 中,a、b、c分别为内角 A、B、C 的对边,bsin A=(3b-c)sinB
(1)若2sin A=3sin B,且△ABC的周长为8,求c
(2)若△ABC为等腰三角形,求cos 2B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合$A=\{x|{log_{\frac{1}{3}}}(4-x)>-1\}$,B={x|4x-1>8},若全集为实数集R,则A∩(∁RB)=(  )
A.$(-∞,\frac{5}{2}]$B.(2,4)C.$(\frac{5}{2},4)$D.(1,$\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为直角坐标系的坐标原点,双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$上有一点$P(\sqrt{5},m)$(m>0),点P在x轴上的射影恰好是双曲线C的右焦点,过点P作双曲线C两条渐近线的平行线,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为1,则双曲线的标准方程是(  )
A.${x^2}-\frac{y^2}{4}=1$B.$\frac{x^2}{2}-\frac{y^2}{3}=1$C.${x^2}-\frac{y^2}{6}=1$D.$\frac{x^2}{{\frac{3}{2}}}-\frac{y^2}{{\frac{7}{2}}}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.欧拉公式eix=cosx+isinx (i为虚数单位)是瑞士数学家欧拉发明的,将指数的定义域扩大到复数集,建立了三角函数和指数函数的联系,被誉为“数学中的天桥”.根据欧拉公式可知,e${\;}^{\frac{π}{3}i}$表示的复数的模为(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的偶函数f(x),满足f(x+4)=f(x),且x∈[0,2]时,f(x)=sinπx+2|sinπx|,则方程f(x)-|lgx|=0在区间[0,10]上根的个数是(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)与函数g(x)是定义在同一区间上的两个函数,若函数y=f(x)-g(x)在次区间上有两个不同的零点,则称函数f(x),g(x)在此区间上是“交织函数”,若f(x)=4|x|-$\frac{9}{4}$与g(x)=2x+m在(-∞,+∞)上是“交织函数”,则m的取值范围为(  )
A.(-$\frac{9}{4}$,-2]B.[-1,0]C.(-∞,-2]D.(-$\frac{9}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=alnx+x-1(a∈R).若f(x)≥0对于任意x∈[1,+∞)恒成立,则实数a的取值范围是(  )
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案