精英家教网 > 高中数学 > 题目详情
13.已知F为双曲线$\frac{x^2}{3a}-\frac{y^2}{a}=1({a>0})$的一个焦点,则点F到C的一条渐近线的距离为(  )
A.$\sqrt{a}$B.aC.$\sqrt{3}a$D.3a

分析 根据题意,由双曲线的几何性质可得焦点坐标以及渐近线的方程,进而由点到直线的距离公式计算可得答案.

解答 解:根据题意,双曲线的焦点坐标为F(±2$\sqrt{a}$,0),
其渐近线方程为:y=±$\frac{\sqrt{3}}{3}$x,
设F(±2$\sqrt{a}$,0)到渐近线y=±$\frac{\sqrt{3}}{3}$x的距离d=$\frac{\frac{2\sqrt{3}}{3}•\sqrt{a}}{\sqrt{1+\frac{1}{3}}}$=$\sqrt{a}$,
故选A.

点评 本题考查双曲线的几何性质,关键是利用双曲线的标准方程,计算出焦点坐标以及渐近线的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC 中,a、b、c分别为内角 A、B、C 的对边,bsin A=(3b-c)sinB
(1)若2sin A=3sin B,且△ABC的周长为8,求c
(2)若△ABC为等腰三角形,求cos 2B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的偶函数f(x),满足f(x+4)=f(x),且x∈[0,2]时,f(x)=sinπx+2|sinπx|,则方程f(x)-|lgx|=0在区间[0,10]上根的个数是(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)与函数g(x)是定义在同一区间上的两个函数,若函数y=f(x)-g(x)在次区间上有两个不同的零点,则称函数f(x),g(x)在此区间上是“交织函数”,若f(x)=4|x|-$\frac{9}{4}$与g(x)=2x+m在(-∞,+∞)上是“交织函数”,则m的取值范围为(  )
A.(-$\frac{9}{4}$,-2]B.[-1,0]C.(-∞,-2]D.(-$\frac{9}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数 f(x)=x+$\frac{2b}{x}$+a,x∈[a,+∞),其中a>0,b∈R,记m(a,b)为 f(x)的最小值,则当m(a,b)=2时,b的取值范围为(  )
A.b>$\frac{1}{3}$B.b<$\frac{1}{3}$C.b>$\frac{1}{2}$D.b<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:?x0∈R,2x0+1≤0,则命题p的否定是(  )
A.?x0∈R,2x0+1>0B.?x∈R,2x+1>0C.?x0∈R,2x0+1≤0D.?x∈R,2x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若一个二面角的两个面的法向量分别为$\overrightarrow{m}$=(0,0,3),$\overrightarrow{n}$=(8,9,2),则这个二面角的余弦值为±$\frac{2\sqrt{149}}{149}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=alnx+x-1(a∈R).若f(x)≥0对于任意x∈[1,+∞)恒成立,则实数a的取值范围是(  )
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)是以π为周期的奇函数,且当$x∈[{-\frac{π}{2}\;,\;0})$时,f(x)=cosx,则$f({-\frac{5π}{3}})$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案