精英家教网 > 高中数学 > 题目详情
20.己知复数z=$\frac{a+3i}{1+2i}$(a∈R,i是虚数单位)是纯虚数,则|z|为(  )
A.$\frac{3}{2}$B.$\frac{15}{2}$C.6D.3

分析 利用复数的运算法则、纯虚数的定义、模的计算公式即可得出.

解答 解:复数z=$\frac{a+3i}{1+2i}$=$\frac{(a+3i)(1-2i)}{(1+2i)(1-2i)}$=$\frac{a+6+(3-2a)i}{5}$(a∈R,i是虚数单位)是纯虚数,
∴$\frac{a+6}{5}$=0,$\frac{3-2a}{5}$≠0.
解得a=-6.
∴z=3i.
则|z|=3.
故选:D.

点评 本题考查了复数的运算法则、纯虚数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如图所示(x(吨)为买进蔬菜的质量,y(天)为销售天数):
x234567912
y12334568
(Ⅰ)根据上表数据在下列网格中绘制散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店准备一次性买进25吨,则预计需要销售多少天.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某程序框图如图所示,若输入的t=4,则输出的k等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,若$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+$\sqrt{2}$,a1=8,则数列{an}的通项公式为(  )
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC 中,a、b、c分别为内角 A、B、C 的对边,bsin A=(3b-c)sinB
(1)若2sin A=3sin B,且△ABC的周长为8,求c
(2)若△ABC为等腰三角形,求cos 2B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x2-($\frac{1}{2}$)x的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合$A=\{x|{log_{\frac{1}{3}}}(4-x)>-1\}$,B={x|4x-1>8},若全集为实数集R,则A∩(∁RB)=(  )
A.$(-∞,\frac{5}{2}]$B.(2,4)C.$(\frac{5}{2},4)$D.(1,$\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.欧拉公式eix=cosx+isinx (i为虚数单位)是瑞士数学家欧拉发明的,将指数的定义域扩大到复数集,建立了三角函数和指数函数的联系,被誉为“数学中的天桥”.根据欧拉公式可知,e${\;}^{\frac{π}{3}i}$表示的复数的模为(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:?x0∈R,2x0+1≤0,则命题p的否定是(  )
A.?x0∈R,2x0+1>0B.?x∈R,2x+1>0C.?x0∈R,2x0+1≤0D.?x∈R,2x+1≥0

查看答案和解析>>

同步练习册答案