10£®ÎªÁ˸üºÃµØ¹æ»®½ø»õµÄÊýÁ¿£¬±£Ö¤Ê߲˵ÄÐÂÏʳ̶ȣ¬Ä³Êß²ËÉ̵ê´ÓijһÄêµÄÏúÊÛÊý¾ÝÖУ¬Ëæ»ú³éÈ¡ÁË8×éÊý¾Ý×÷ΪÑо¿¶ÔÏó£¬ÈçͼËùʾ£¨x£¨¶Ö£©ÎªÂò½øÊ߲˵ÄÖÊÁ¿£¬y£¨Ì죩ΪÏúÊÛÌìÊý£©£º
x234567912
y12334568
£¨¢ñ£©¸ù¾ÝÉϱíÊý¾ÝÔÚÏÂÁÐÍø¸ñÖлæÖÆÉ¢µãͼ£»
£¨¢ò£©¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\hat y=\hat bx+\hat a$£»
£¨¢ó£©¸ù¾Ý£¨¢ò£©ÖеļÆËã½á¹û£¬Èô¸ÃÊß²ËÉ̵ê×¼±¸Ò»´ÎÐÔÂò½ø25¶Ö£¬ÔòÔ¤¼ÆÐèÒªÏúÊÛ¶àÉÙÌ죮
²Î¿¼¹«Ê½£º$\hat b=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©}£¨{{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£®

·ÖÎö £¨¢ñ£©¸ù¾ÝËù¸øÊý¾Ý»­³öÉ¢µãͼ¼´¿É£»
£¨¢ò£©Çó³öÖÐÐĵãµÄ×ø±ê£¬Çó³ö»¯¹é·½³ÌÖеÄϵÊý£¬´úÈë·½³Ì¼´¿É£»
£¨¢ó£©½«xµÄÖµ´úÈë·½³ÌÇó³ö¶ÔÓ¦µÄyµÄÖµ¼´¿É£®

½â´ð ½â£º£¨¢ñ£©É¢µãͼÈçͼËùʾ£º

£¨¢ò£©ÒÀÌâÒ⣬$\overline x=\frac{1}{8}£¨{2+3+4+5+}\right.$6+7+9+12£©=6£¬$\overline y=\frac{1}{8}£¨{1+2+3+4}\right.$+5+6+8£©=4£¬
$\sum_{i=1}^8{x_i^2}=4+9+16+25$+36+49+81+144=364£¬$\sum_{i=1}^8{{x_i}{y_i}}=2+6+12+15+24$+35+54+96=244£¬
$\hat b=\frac{{\sum_{i=1}^8{{x_i}{y_i}-8\overline x\overline y}}}{{\sum_{i=1}^8{x_i^2}}}$=$\frac{244-8¡Á6¡Á4}{{364-8¡Á{6^2}}}=\frac{13}{19}$£¬¡à$\hat a=4-\frac{13}{19}¡Á6=-\frac{2}{19}$£¬
¡à»Ø¹éÖ±Ïß·½³ÌΪ$\hat y=\frac{13}{19}x-\frac{2}{19}$£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª£¬µ±x=25ʱ£¬$y=\frac{13}{19}¡Á25-$$\frac{2}{19}=17$£®
¼´ÈôÒ»´ÎÐÔÂò½øÊß²Ë25¶Ö£¬ÔòÔ¤¼ÆÐèÒªÏúÊÛ17Ì죮

µãÆÀ ±¾Ì⿼²éÁËÉ¢µãͼÎÊÌ⣬¿¼²éÇ󻨹鷽³ÌÎÊÌ⣬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®$\int_{-1}^1{£¨{{e^{|x|}}+\sqrt{4-{x^2}}}£©}dx$=$2e+\frac{2}{3}¦Ð-2+\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªf£¨x£©=£¨kx+b£©•ex£¬ÇÒÇúÏßy=f£¨x£©ÔÚx=1´¦µÄÇÐÏß·½³ÌΪy=e£¨x-1£©£®
£¨¢ñ£©ÇókÓëbµÄÖµ£»
£¨¢ò£©Çó${¡Ò}_{0}^{1}$£¨x•ex£©dx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{x^2}+2x£¬-2¡Üx¡Ü0\\ f£¨{x-1}£©+1£¬0£¼x¡Ü2\end{array}\right.$£¬Ôò¹ØÓÚxµÄ·½³Ìx-f£¨x£©=0ÔÚ[-2£¬2]ÉϵĸùµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êý$f£¨x£©=x{e^x}-\frac{m}{2}{x^2}-mx$£¬Ôòº¯Êýf£¨x£©ÔÚ[1£¬2]ÉϵÄ×îСֵ²»¿ÉÄÜΪ£¨¡¡¡¡£©
A£®$e-\frac{3}{2}m$B£®$-\frac{1}{2}m{ln^2}m$C£®2e2-4mD£®e2-2m

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®µãMΪÍÖÔ²$\frac{x^2}{9}+\frac{y^2}{4}=1$ÉÏÒ»µã£¬ÔòMµ½Ö±ÏߵľàÀëx+2y-10=0×îСֵΪ£¨¡¡¡¡£©
A£®$3\sqrt{5}$B£®$2\sqrt{5}$C£®$\sqrt{5}$D£®$\frac{{\sqrt{5}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªbcosC+bsinC=a£®
£¨¢ñ£©Çó½ÇBµÄ´óС£»
£¨¢ò£©ÈôBC±ßÉϵĸߵÈÓÚ$\frac{1}{4}a$£¬ÇócosAµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×㣺${S_n}={n^2}+2n£¬n¡Ê{N^*}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼ÇÊýÁÐ$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$µÄǰnÏîºÍΪTn£¬ÇóÖ¤£º${T_n}£¼\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¼ºÖª¸´Êýz=$\frac{a+3i}{1+2i}$£¨a¡ÊR£¬iÊÇÐéÊýµ¥Î»£©ÊÇ´¿ÐéÊý£¬Ôò|z|Ϊ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{15}{2}$C£®6D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸