精英家教网 > 高中数学 > 题目详情
17.已知命题p:?x∈R,x2+ax+a2≥0(a∈R),命题q:$?{x_0}∈{N^*}$,$2x_0^2-1≤0$,则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.?p)∨qD.?p)∧(?q)

分析 利用不等式的解法化简命题p,q,再利用复合命题的判定方法即可得出.

解答 解:命题p:∵△=a2-4a2=-3a2≤0,因此?x∈R,x2+ax+a2≥0(a∈R),是真命题.
命题q:由2x2-1≤0,解得$-\frac{\sqrt{2}}{2}$≤x$≤\frac{\sqrt{2}}{2}$,因此不存在x0∈N*,使得$2x_0^2-1≤0$,是假命题.
则下列命题中为真命题的是p∨q.
故选:B.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,离心率为$\frac{1}{2}$,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列一段推理:若一条直线平行于平面,则这条直线平行于平面内所有直线.已知直线a?平面α,直线b?平面α,且a∥α,所以a∥b.上述推理的结论不一定是正确的,其原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=x{e^x}-\frac{m}{2}{x^2}-mx$,则函数f(x)在[1,2]上的最小值不可能为(  )
A.$e-\frac{3}{2}m$B.$-\frac{1}{2}m{ln^2}m$C.2e2-4mD.e2-2m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,且过点$({-1,\frac{3}{2}})$,椭圆C的右顶点为A.
(Ⅰ)求椭圆的C的标准方程;
(Ⅱ)已知过点$B({\frac{1}{2},0})$的直线交椭圆C于P,Q两点,且线段PQ的中点为R,求直线AR的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC+bsinC=a.
(Ⅰ)求角B的大小;
(Ⅱ)若BC边上的高等于$\frac{1}{4}a$,求cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,$cosB=\frac{3}{5}$,AC=5,AB=6,则角C的正弦值为(  )
A.$\frac{24}{25}$B.$\frac{16}{25}$C.$\frac{9}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${(x+\frac{1}{x}+2)^5}$的展开式中,x2的系数是120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在区间(π,2π)内有零点,则ω的取值范围是(  )
A.($\frac{1}{4}$,$\frac{5}{8}$)∪($\frac{5}{4}$,+∞)B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.($\frac{1}{8}$,$\frac{1}{4}$)∪($\frac{5}{8}$,$\frac{5}{4}$)D.($\frac{1}{8}$,$\frac{1}{4}$)∪($\frac{5}{8}$,+∞)

查看答案和解析>>

同步练习册答案