精英家教网 > 高中数学 > 题目详情
12.已知f(x+y)=f(x)-f(y)对全体实数x,y都成立,则f(x)是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

分析 根据题意,用特殊值法分析:在f(x+y)=f(x)-f(y)中,令x=y=0可得f(0)=0,再令y=-x可得:f[x+(-x)]=f(x)+f(-x),即f(0)=f(x)+f(-x),由f(0)的值,可得f(-x)=-f(x),由偶函数的性质即可得答案.

解答 解:根据题意,f(x+y)=f(x)-f(y)对全体实数x,y都成立,
令x=y=0可得:f(0+0)=f(0)-f(0)=0,即f(0)=0,
再令y=-x可得:f[x+(-x)]=f(x)+f(-x),即f(0)=f(x)+f(-x),
又由f(0)=0,则有f(x)+f(-x)=0,即f(-x)=-f(x),
则函数f(x)为偶函数;
故选:B.

点评 本题考查函数奇偶性的判定,涉及抽象函数的问题,一般利用特殊值法分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下面几种推理是合情推理的是(  )
①由圆的性质类比出球的有关性质
②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°
③某次考试张军成绩是100分,由此推出全班同学成绩都是100分
④数列1,0,1,0,…,推测出每项公式an=$\frac{1}{2}$+(-1)n+1•$\frac{1}{2}$.
A.①②B.①③④C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y≥2}\\{ax+y≤4}\\{y≥-1}\end{array}\right.$,目标函数z=3x+y,若a=1,则z的最小值为2;若z的最大值为5,则实数a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某空间几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{40}{3}$B.$\frac{34}{3}$C.$10+\frac{{4\sqrt{2}}}{3}$D.$6+\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$,g(x)=1-x$+\frac{{x}^{2}}{2}$$-\frac{{x}^{3}}{3}$,设函数F(x)=f(x)•g(x),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,a、b、c分别是角A、B、C的对边,且满足(a+b)sin$\frac{C}{2}$=12,(a-b)cos$\frac{C}{2}$=5,则c=13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格的概率为$\frac{4}{5}$,乙及格的概率为$\frac{2}{5}$,丙及格的概率为$\frac{2}{3}$,则三人中至少有一个及格的概率为$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{(x+1)(x+a)}{{x}^{2}}$为偶函数.
(1)求实数a的值;
(2)记集合E={y|y=f(x),x∈{-1,1,2}},λ=(lg 2)2+lg 2lg 5+lg 5-$\frac{1}{4}$,判断λ与E的关系;
(3)当x∈[$\frac{1}{m}$,$\frac{1}{n}$](m>0,n>0)时,若函数f(x)的值域为[2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈(-∞,0),则$a+\frac{1}{b},b+\frac{1}{a}$(  )
A.都不大于-2B.都不小于-2
C.至少有一个不大于-2D.至少有一个不小于-2

查看答案和解析>>

同步练习册答案