分析 由EF⊥平面ADE得出EF⊥平面ADE得出AB⊥平面ADE,故而AB⊥BC,结合三棱锥的等体积法,从而判定.
解答 解:如图所示,由已知得ED⊥EF,AE⊥EF,∴∠AED就是二面角D-EF-B的平面角,∴①∠AED=45°正确;
∵EF∥AB,∴异面直线EF与AC所成角等于∠CAB,在△CFB中,由余弦定理可得BC=$\sqrt{2-\sqrt{2}}$;
在直角三角形ABC中,tan∠CAB=$\frac{BC}{AB}$=$\sqrt{2-\sqrt{2}}$,故②正确;
三棱锥C-ABF的体积等于三棱锥A-CBF的体积等于$\frac{1}{3}×{s}_{△BCF}×AB=\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×\frac{1}{2}×sin4{5}^{0}$=$\frac{\sqrt{2}}{48}$
故答案为:①②③![]()
点评 本题考查了线面垂直的判定,异面直线夹角,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (1,2] | B. | $({\frac{3}{4},2}]$ | C. | $[{\frac{3}{4},2})$ | D. | $({\frac{1}{2},2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,则α∥β | B. | 若l∥α,l⊥β,则α⊥β | C. | 若l⊥α,α⊥β,则l∥β | D. | 若l∥α,α⊥β,则l⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com