精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{p}$、$\overrightarrow{q}$满足|$\overrightarrow{p}$=2$\sqrt{2}$,|$\overrightarrow{q}$|=3,$\overrightarrow{p}$、$\overrightarrow{q}$的夹角为$\frac{π}{4}$,如图,若$\overrightarrow{AB}$=$\overrightarrow{p}$+2$\overrightarrow{q}$,$\overrightarrow{AC}$=$\overrightarrow{p}$-3$\overrightarrow{q}$,$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则|$\overrightarrow{AD}$|为|(  )
A.$\frac{15}{2}$B.$\frac{\sqrt{15}}{2}$C.$\frac{17}{2}$D.$\frac{\sqrt{17}}{2}$

分析 首先由已知求出向量$\overrightarrow{p}$、$\overrightarrow{q}$的数量积,进一步求出$\overrightarrow{AB}$,$\overrightarrow{AC}$的模长以及它们的数量积,然后对|$\overrightarrow{AD}$|平方展开求值,再开方求模长.

解答 解:向量$\overrightarrow{p}$、$\overrightarrow{q}$满足|$\overrightarrow{p}$=2$\sqrt{2}$,|$\overrightarrow{q}$|=3,$\overrightarrow{p}$、$\overrightarrow{q}$的夹角为$\frac{π}{4}$,
所以$\overrightarrow{p}•\overrightarrow{q}=2\sqrt{2}×3×cos\frac{π}{4}$=6,
$\overrightarrow{AB}$=$\overrightarrow{p}$+2$\overrightarrow{q}$,$\overrightarrow{AC}$=$\overrightarrow{p}$-3$\overrightarrow{q}$,所以$|\overrightarrow{AB}|=\sqrt{{\overrightarrow{p}}^{2}+4{\overrightarrow{q}}^{2}+4\overrightarrow{p}•\overrightarrow{q}}$=$\sqrt{68}$,
$|\overrightarrow{AC}|=\sqrt{{\overrightarrow{p}}^{2}+9{\overrightarrow{q}}^{2}-6\overrightarrow{p}•\overrightarrow{q}}$=$\sqrt{53}$,$\overrightarrow{AB}•\overrightarrow{AC}$=${\overrightarrow{p}}^{2}-6{\overrightarrow{q}}^{2}-\overrightarrow{p}•\overrightarrow{q}$=-52;
$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
则|$\overrightarrow{AD}$|2=$\frac{1}{4}$(${\overrightarrow{AB}}^{2}+{\overrightarrow{AC}}^{2}+2\overrightarrow{AB}•\overrightarrow{AC}$)=$\frac{1}{4}$(68+53-104)=$\frac{17}{4}$;
所以|$\overrightarrow{AD}$|=$\frac{\sqrt{17}}{2}$;
故选D.

点评 本题考查了平面向量数量积公式的运用;熟练掌握公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.甲乙两人在一次射击测试中各射靶10次,如图是这两人命中环数的统计图,若甲乙的成绩平均数分别为$\overline{{x}_{1}}$和$\overline{{x}_{2}}$,成绩的标准差分别为s1和s2,则(  )
A.$\overline{{x}_{1}}$=$\overline{{x}_{2}}$,s1>s2B.$\overline{{x}_{1}}$=$\overline{{x}_{2}}$,s1<s2C.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1>s2D.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1<s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}中,a1=2,$\frac{{a}_{n+1}-3}{{a}_{n}}$=2,则数列{an}的前n项和为(  )
A.3×2n-3n-3B.5×2n-3n-5C.3×2n-5n-3D.5×2n-5n-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图执行右面的程序框图,输入m=4,那么输出的S等于(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y均为正数,且x+2y=4,则xy的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某市重点中学奥数培训班共有15人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,甲组同学成绩的极差是m,乙组学生成绩的中位数是86,则m+n的值是(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.命题p:函数f(x)=(3-m)x在R上是增函数,命题q:?x∈R,x2+2x+m≥0,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是递增的等比数列,且a1+a4=9,a2•a3=8.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4{a}_{n}}{n•{2}^{n}}$,求数列{bn•bn+1}的前2019项和T2019

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个体积为12$\sqrt{3}$的正棱柱的三视图,如图所示,则该三棱柱的高为(  )
A.3B.$3\sqrt{3}$C.$2\sqrt{3}$D.4

查看答案和解析>>

同步练习册答案