精英家教网 > 高中数学 > 题目详情
下列函数既是偶函数,又在(0,+∞)上为增函数的是(  )
A、y=ex
B、y=x 
1
2
C、y=x3
D、y=|x|
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:根据基本初等函数的单调性奇偶性,逐一分析答案四个函数在(0,+∞)上的单调性和奇偶性,逐一比照后可得答案.
解答: 解:y=ex在(0,+∞)上为增函数,但既不是奇函数也不是偶函数;
y=x
1
2
定义域为(0,+∞),不关于原点对称,故既不是奇函数也不是偶函数;
y= x3是奇函数;
y=|x|既是偶函数,又在(0,+∞)上为增函数.
故选D.
点评:本题考查的知识点是函数的奇偶性与单调性的综合,熟练掌握各种基本初等函数的单调性和奇偶性是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过直线x=4上动点P作圆O:x2+y2=4的两条切线PA,PB,其中A,B是切点,则下列结论中正确的是
 
.(填正确结论的序号)
①|OP|的最小值是4;
OP
AB
=0;
OP
OA
=4;
④存在点P,使△OAP的面积等于
11

⑤任意点P,直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机变量ξ服从正态分布N(1,σ 2),已知P(ξ<0)=0.4,则P(ξ<2)=(  )
A、0.1B、0.2
C、0.4D、0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x2-6x-7,则它在[-2,4]上的最大值,最小值分别是(  )
A、9,-15
B、12,-15
C、9,-16
D、9,-12

查看答案和解析>>

科目:高中数学 来源: 题型:

如果两个球的半径之比为2:3,那么两个球的表面积之比为(  )
A、8:27B、2:3
C、4:9D、2:9

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)梯形ABCD的直观图是一个等腰梯形A1B1C1D1,等腰梯形A1B1C1D1的底角为
π
4
且面积为
2
,则梯形ABCD的面积为(  )
A、4
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若随机变量X服从两点分布,其中P(X=0)=
1
3
,则E(3X+2)和D(3X+2)的值分别是(  )
A、4和4B、4和2
C、2和4D、2和2

查看答案和解析>>

科目:高中数学 来源: 题型:

a=0.90.9,b=0.93.1,c=0.9-1.5的大小关系是(  )
A、c<b<a
B、a<b<c
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=
3
cosx+sinx(x∈R)的图象向左平移
π
6
个长度单位后,所得到的图象关于(  )对称.
A、y轴
B、原点(0,0)
C、直线x=
π
3
D、点(
6
,0)

查看答案和解析>>

同步练习册答案