精英家教网 > 高中数学 > 题目详情
14.某同学在一次研究性学习中发现,以下四个式中的值都等于同一个常数k.
①cos211°+sin241°-cos11°sin41°;
②cos222°+sin252°-cos22°sin52°;
③cos230°+sin260°-cos30°sin60°;
④cos244°+sin274°-cos44°sin74°.
(1)试从上述四个式中选择一个,求出这个常数k的值;
(2)根据(1)的计算结果,将该同学的发现推广三角恒定等式,并证明你的结论.

分析 (1)选③计算即可,
(2)依据式子的结构特点、角之间的关系,可以得到形如“cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$”的规律.然后利用三角函数的化简即可得到答案

解答 解:(1)cos230°+sin260°-cos30°sin60°=$\frac{3}{4}$+$\frac{3}{4}$-$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{3}{4}$
(2)根据式子特点猜想:cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$
证明:cos2α+sin2(α+30°)-cosαsin(α+30°)
=cos2α+(sin30°cosα+cos30°sinα)2-cosα(sin30°cosα+cos30°sinα)
=cos2α+($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)2-cosα($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)
=cos2α+($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)(-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)
=cos2α-$\frac{1}{4}$cos2α+$\frac{3}{4}$sin2α=$\frac{3}{4}$.

点评 归纳推理一般是先根据个别情况所体现出来的某些相同的规律,然后从这些已知的相同性质规律推出一个明确的一般性规律或性质.此题是一个三角函数式,所以重点抓住角之间的关系,式子的结构特点进行归纳,得出一般性结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=log2x+ax+b(a>0),若存在实数b,使得对任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,则t的最小值是(  )
A.2B.1C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的内角A,B,C所对的边长分别为a,b,c,且cosA=$\frac{4}{5}$,(a-2):b:(c+2)=1:2:3,则△ABC的形状为(  )
A.等边三角形B.直角三角形C.钝角三角形D.锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.P是双曲线C:x2-y2=2左支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F2是双曲线C的右焦点,则|PF2|+|PQ|的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$3\sqrt{2}$D.$2+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展开式的常数项为240,则$\int_{-a}^a{({x^2}+xcosx+\sqrt{4-{x^2}})dx}$=2π+$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a>0,b>0,且$\sqrt{a}+\sqrt{b}=1$,则$\frac{1}{a}+\frac{1}{b}$的最小值为,8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若角α,β满足-$\frac{π}{2}$<α<0<β<$\frac{π}{3}$,则α-β的取值范围是(  )
A.$(-\frac{π}{2},\;-\frac{π}{3})$B.$(-\frac{5π}{6},\;0)$C.$(-\frac{π}{2},\;\frac{π}{3})$D.$(-\frac{π}{6},\;0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为研究两个变量之间的关系,选择了4个不同的模型进行拟合,计算得它们的相关指数R2如下,其中拟合效果最好的模型是(  )
A.相关指数R2为0.96B.相关指数R2为0.75
C.相关指数R2为0.52D.相关指数R2为0.34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.袋子中装有大小完全相同的6个红球和4个黑球,从中任取2个球,则所取出的两个球中恰有1个红球的概率为(  )
A.$\frac{4}{15}$B.$\frac{12}{25}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案