精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|-1<x<1},B={x|x2-x-2<0}则图中阴影部分所表示的集合为(  )
A.(-1,0]B.[-1,2)C.[1,2)D.(1,2]

分析 由图象可知阴影部分对应的集合为B∩(∁UA),然后根据集合的基本运算即可.

解答 解:∵B={x|x2-x-2<0}={x|-1<x<2},
∴由图象可知阴影部分对应的集合为B∩(∁UA),
∴∁UA={{x|x≥1或x≤-1},
∴B∩(∁UA)={x|1≤x<2}.
故选:C.

点评 本题主要考查集合的基本运算,利用图象先确定集合关系是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知抛物线的顶点在坐标原点,焦点F在y轴上,点A(a,1)在抛物线上,且|FA|=2
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线于不同的两点M,N若抛物线上一点C满足$\overrightarrow{OC}$=λ($\overrightarrow{OM}$+$\overrightarrow{ON}$)(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3+$\frac{1}{2}$mx2-2m2x-4有极大值-$\frac{2}{5}$,(m为非零常数),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=0,an+1=an+$\frac{1}{n(n+1)}$+1.
(1)证明数列{an+$\frac{1}{n}$}是等差数列,并求数列{an}的通项公式;
(2)(理科)设数列{$\frac{{a}_{n}}{n}$}的前n项和为Sn,证明Sn<$\frac{{n}^{2}}{n+1}$.
(文科)设bn=$\frac{{a}_{n}}{n+1}$,求数列{bn}前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则(  )
A.该几何体体积为$\frac{5}{6}$B.该几何体体积可能为$\frac{2}{3}$
C.该几何体表面积应为$\frac{9}{2}$+$\frac{\sqrt{3}}{2}$D.该几何体唯一

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)的极值点为m、n,满足|m-n|≤a,且|f(m)-f(n)|≤a,则称函数f(x)为“密集a函数”,设f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$ax2-2ax+2a+1(a≠0)是“密集3函数”,则a的取值范围是$[-\frac{2}{3},0)∪(0,\frac{2}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(sinα-cosα,tanα)在第二象限,则α的一个变化区间是(  )
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.$({-\frac{π}{4},\frac{π}{4}})$C.$({-\frac{3π}{4},-\frac{π}{2}})$D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题p:?x∈R,ex-mx=0,命题q:f(x)=$\frac{1}{3}{x^3}$-mx2-2x在[-1,1]递减,若p∨(?q)为假命题,则实数m的取值范围为(  )
A.[0,$\frac{1}{2}$]B.[-3,0]C.[-3,e)D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知O、A、B是不共线的三个定点,D是平面OAB内一点,且$\overrightarrow{OD}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则下列命题正确的是①②④(写出所有正确命题的序号).
①若x+y=1,则点D在直线AB上;
②若x+y=k(k为常数,且k≠1),则点D在平行于直线AB的直线上;
③若直线OD与直线AB交于不同于A、B的点P,则$\overrightarrow{AP}$=-$\overrightarrow{PB}$;
④若x>0,y>0,S△OAD、S△OBD分别表示△OAD、△OBD的面积,则S△OAD:S△OBD=y:x;
⑤若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,且x2+y2=1,则点D在一圆上或椭圆上.

查看答案和解析>>

同步练习册答案