精英家教网 > 高中数学 > 题目详情
20.已知点P(sinα-cosα,tanα)在第二象限,则α的一个变化区间是(  )
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.$({-\frac{π}{4},\frac{π}{4}})$C.$({-\frac{3π}{4},-\frac{π}{2}})$D.($\frac{π}{2}$,π)

分析 利用三角函数值的符号,求解角的范围即可.

解答 解:点P(sinα-cosα,tanα)在第二象限,
可知$\left\{\begin{array}{l}sinα-cosα<0\\ tanα>0\end{array}\right.$,
可得sinα,cosα同号,即α在第一象限或第三象限,
考察选项可知,C满足题意.
故选:C.

点评 本题考查三角函数值符号的判断,选择题的解法,直接法与间接法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知抛物线y2=-2px(p>0)与直线y=k(x+1)相交于A,B两点,且焦点到准线的距离为$\frac{1}{2}$.
(1)求该抛物线的方程;
(2)当△AOB的面积等于$\sqrt{10}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知关于x的方程x2+(4+i)x+4+ai=0(a∈R)有实根b,则a+b的值为(  )
A.0B.-1C.±1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|-1<x<1},B={x|x2-x-2<0}则图中阴影部分所表示的集合为(  )
A.(-1,0]B.[-1,2)C.[1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设P为椭圆 $\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任一点,F1、F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆的方程;
(2)若直线l:y=kx+m(≠0)与椭圆交于A、B两点,若线段AB的中点C的直线y=$\frac{1}{2}$x上,O为坐标原点.求△OAB的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设F1,F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{16}$=1(a>0)的左、右焦点,点P为双曲线C右支上一点,如果|PF1|-|PF2|=6,那么双曲线C的方程为$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1;离心率为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若$\frac{1}{b+c}$、$\frac{1}{a+c}$、$\frac{1}{a+b}$成等差数列,求证:a2、b2、c2成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}中,a1=5,7a2=4a4,数列{bn}前n项和为Sn,且Sn=2(bn-1)(n∈N*).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设数列${c_n}=\left\{\begin{array}{l}{a_n}\;,\;n为奇数\\{b_n}\;,\;n为偶数\end{array}\right.$,求{cn}的前n项和Tn
(Ⅲ)把数列{an}和{bn}的公共项从小到大排成新数列{dn},试写出d1,d2,并证明{dn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-\frac{π}{2}}^{0}$$\sqrt{1+sin2x}$dx=$2\sqrt{2}-2$.

查看答案和解析>>

同步练习册答案