分析 利用双曲线的定义求出a,然后求解离心率即可.
解答 解:F1,F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{16}$=1(a>0)的左、右焦点,点P为双曲线C右支上一点,如果|PF1|-|PF2|=6,可得a=3,
双曲线方程为:$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1,则b=4,c=5,
双曲线的离心率为:e=$\frac{5}{3}$.
故答案为:$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1;$\frac{5}{3}$.
点评 本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3]∪[1,+∞) | B. | [-3,1] | ||
| C. | (-∞,-3]∪[1,$\frac{3}{2}$)∪($\frac{3}{2}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{2}$,$\frac{π}{2}$) | B. | $({-\frac{π}{4},\frac{π}{4}})$ | C. | $({-\frac{3π}{4},-\frac{π}{2}})$ | D. | ($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{1}{2}$] | B. | [-3,0] | C. | [-3,e) | D. | [0,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com