精英家教网 > 高中数学 > 题目详情
12.若$\frac{1}{b+c}$、$\frac{1}{a+c}$、$\frac{1}{a+b}$成等差数列,求证:a2、b2、c2成等差数列.

分析 根据题意和等差中项的性质列出方程,化简后利用等差中项的性质进行证明即可.

解答 证明:因为$\frac{1}{b+c}$、$\frac{1}{a+c}$、$\frac{1}{a+b}$成等差数列,
所以$\frac{2}{a+c}$=$\frac{1}{b+c}$+$\frac{1}{a+b}$,
即$\frac{2}{a+c}=\frac{a+c+2b}{(b+c)(a+b)}$,
化简得2b2=a2+c2
所以a2、b2、c2成等差数列.

点评 本题考查等差中项的性质,以及化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{{k}^{2}+2k(1-{a}^{2}),x≥0}\\{{x}^{2}-2(1-{a}^{2})x+(a-4)^{2},x<0}\end{array}\right.$,a∈R,若对任意非零实数x1,存在非零实数x2(x1≠x2),使得f(x2)=f(x1),则实数k的最小值(  )
A.$\frac{15}{2}$B.$-\frac{15}{2}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则(  )
A.该几何体体积为$\frac{5}{6}$B.该几何体体积可能为$\frac{2}{3}$
C.该几何体表面积应为$\frac{9}{2}$+$\frac{\sqrt{3}}{2}$D.该几何体唯一

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(sinα-cosα,tanα)在第二象限,则α的一个变化区间是(  )
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.$({-\frac{π}{4},\frac{π}{4}})$C.$({-\frac{3π}{4},-\frac{π}{2}})$D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=6,sinA-sinC=sin(A-B).
(Ⅰ)若b=2$\sqrt{7}$,求△ABC的面积;
(Ⅱ)若1≤a≤6,求sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题p:?x∈R,ex-mx=0,命题q:f(x)=$\frac{1}{3}{x^3}$-mx2-2x在[-1,1]递减,若p∨(?q)为假命题,则实数m的取值范围为(  )
A.[0,$\frac{1}{2}$]B.[-3,0]C.[-3,e)D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设定义域为(0,+∞)的单调函数f(x),对于任意的x∈(0,+∞),都有f[f(x)-x2]=6,则f(4)=(  )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某新产品成本价P元,由于不断进行技术革新,每年成本降低5%,则x年后该产品的成本价为P•0.95x元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某个兴趣小组有学生10人,其中有4人是三好学生,现已把这10人分成两组进行竞赛辅导,第一小组5人,其中三好学生2人.
(1)如果要从这10人中选一名同学作为该兴趣小组的组长,那么这个同学恰好在第一小组内的概率是多少?
(2)现在要在这10人中任选一名三好学生当组长,则这名同学在第一小组的概率是多少?

查看答案和解析>>

同步练习册答案