精英家教网 > 高中数学 > 题目详情
11.已知关于x的方程x2+(4+i)x+4+ai=0(a∈R)有实根b,则a+b的值为(  )
A.0B.-1C.±1D.1

分析 关于x的方程x2+(4+i)x+4+ai=0(a∈R)有实根b,化为b2+4b+4+(a+b)i=0,$\left\{\begin{array}{l}{{b}^{2}+4b+4=0}\\{a+b=0}\end{array}\right.$,解出即可.

解答 解:∵关于x的方程x2+(4+i)x+4+ai=0(a∈R)有实根b,
∴b2+(4+i)b+4+ai=0,
化为b2+4b+4+(a+b)i=0,
∴$\left\{\begin{array}{l}{{b}^{2}+4b+4=0}\\{a+b=0}\end{array}\right.$,
∴a+b=0.
故选:A.

点评 本题考查了复数相等、运算法则,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知F是抛物线y=$\frac{1}{4}$x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是(  )
A.x2=2y-1B.x2=2y-$\frac{1}{16}$C.x2=y-$\frac{1}{2}$D.x2=2y-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{{k}^{2}+2k(1-{a}^{2}),x≥0}\\{{x}^{2}-2(1-{a}^{2})x+(a-4)^{2},x<0}\end{array}\right.$,a∈R,若对任意非零实数x1,存在非零实数x2(x1≠x2),使得f(x2)=f(x1),则实数k的最小值(  )
A.$\frac{15}{2}$B.$-\frac{15}{2}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3+$\frac{1}{2}$mx2-2m2x-4有极大值-$\frac{2}{5}$,(m为非零常数),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=f(x)的图象过原点且它的导函数y=f′(x)的图象是如图所示的一条直线,y=f(x)的图象的顶点在(  )
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=0,an+1=an+$\frac{1}{n(n+1)}$+1.
(1)证明数列{an+$\frac{1}{n}$}是等差数列,并求数列{an}的通项公式;
(2)(理科)设数列{$\frac{{a}_{n}}{n}$}的前n项和为Sn,证明Sn<$\frac{{n}^{2}}{n+1}$.
(文科)设bn=$\frac{{a}_{n}}{n+1}$,求数列{bn}前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则(  )
A.该几何体体积为$\frac{5}{6}$B.该几何体体积可能为$\frac{2}{3}$
C.该几何体表面积应为$\frac{9}{2}$+$\frac{\sqrt{3}}{2}$D.该几何体唯一

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(sinα-cosα,tanα)在第二象限,则α的一个变化区间是(  )
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.$({-\frac{π}{4},\frac{π}{4}})$C.$({-\frac{3π}{4},-\frac{π}{2}})$D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某新产品成本价P元,由于不断进行技术革新,每年成本降低5%,则x年后该产品的成本价为P•0.95x元.

查看答案和解析>>

同步练习册答案