精英家教网 > 高中数学 > 题目详情
15.在正方体ABCD-A1B1C1D1中,如图.
(1)求证:平面AB1D1∥平面C1BD;
(2)若正方体棱长为1,求点A1到面AB1D1的距离.

分析 (1)推导出BD∥B1D1,DC1∥AB1,由此能证明平面AB1D1∥平面C1BD.
(2)设点A1到面AB1D1的距离为h.由${V}_{{A}_{1}-A{B}_{1}{D}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{D}_{1}}$,能求出点A1到面AB1D1的距离.

解答 证明:(1)在正方体ABCD-A1B1C1D1中,
∵BD∥B1D1,DC1∥AB1
BD∩DC1=D,D1B1∩AD1=D1
BD,DC1?平面BDC1,D1B1,AB1?平面AB1D1
∴平面AB1D1∥平面C1BD.
解:(2)设点A1到面AB1D1的距离为h.
∵正方体棱长为1,∴AB1=AD1=B1D1=$\sqrt{2}$,
∴${S}_{△A{B}_{1}{D}_{1}}$=$\frac{1}{2}×\sqrt{2}×\sqrt{2}×sin60°$=$\frac{\sqrt{3}}{2}$,
S${\;}_{△{A}_{1}{B}_{1}{D}_{1}}$=$\frac{1}{2}×1×1$=$\frac{1}{2}$,
∵${V}_{{A}_{1}-A{B}_{1}{D}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{D}_{1}}$,
∴$\frac{1}{3}×h×{S}_{△A{B}_{1}{D}_{1}}$=$\frac{1}{3}×A{A}_{1}×{S}_{△{A}_{1}{B}_{1}{C}_{1}}$,
∴h=$\frac{A{A}_{1}×{S}_{△{A}_{1}{B}_{1}{D}_{1}}}{{S}_{△A{B}_{1}{D}_{1}}}$=$\frac{1×\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$.
∴点A1到面AB1D1的距离为$\frac{{\sqrt{3}}}{3}$.

点评 本题考查面面平行的证明,考查点到平面的距离的求法,考查推理论证能力、运算求解能力、空间想象能力,考查等价转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.用三段论推理:“任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0”,你认为这个推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图在边长为4的正方形铁皮的四角切去相等的正方形,在把它的边沿虚线折起,做成一个无盖的方底盒子.
问:切去的小正方形边长为多少时,盒子容积最大?最大容积V1是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$|{\overrightarrow{e_1}}|=|{\overrightarrow{e_2}}|=1$,$cos<\overrightarrow{e_1},\overrightarrow{e_2}>=-\frac{1}{5}$,且$\overrightarrow a=2\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=\overrightarrow{e_1}+3\overrightarrow{e_2}$,则$\overrightarrow a•\overrightarrow b$=(  )
A.2B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题$p:?{x_0}∈R,x_0^2+{x_0}-1<0$,则¬p为(  )
A.?x∈R,x2+x-1≥0B.$?{x_0}∈R,x_0^2+{x_0}-1>0$
C.$?{x_0}∉R,x_0^2+{x_0}-1≥0$D.?x∉R,x2+x-1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=sin2x的图象向右平移φ$({0<φ<\frac{π}{2}})$个单位后得到函数g(x)的图象,若g(x)在区间$[{0,\frac{π}{6}}]$上单调递增,且函数g(x)的最大负零点在区间$({-\frac{π}{3},-\frac{π}{6}})$上,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{6}$,$\frac{5π}{12}$)C.[$\frac{π}{6}$,$\frac{π}{3}$]D.($\frac{π}{6}$,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.幂函数f(x)=(m2-m-1)x-m在x∈(0,+∞)时为减函数,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设数列{an}满足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超过x的最大整数,则$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

查看答案和解析>>

同步练习册答案