精英家教网 > 高中数学 > 题目详情
3.已知α∈(0,π),且sinα+cosα=$\frac{\sqrt{2}}{2}$,求sinα-cosα的值.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα-cosα的正负,利用完全平方公式及同角三角函数间的基本关系即可求出sinα-cosα的值.

解答 解:把sinα+cosα=$\frac{\sqrt{2}}{2}$①,两边平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{1}{2}$,
∴2sinαcosα=-$\frac{1}{2}$,
∵α∈(0,π),
∴sinα>0,cosα<0,即sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{3}{2}$,
∴sinα-cosα=$\frac{\sqrt{6}}{2}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x•|2x-a|(a>0)在区间[1,2]上的最小值为2,则a=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知tanα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,且0<α<$\frac{π}{2}$,$\frac{3π}{2}$<β<2π,则α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知过点P(0,-1)的直线与曲线y=1nx相切,这条直线也与曲线y=ax2+5x+1(α≠0)相切,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C所对边的长分别为a,b,c,M为AB边上一点,$\overrightarrow{CM}$=λ$\overrightarrow{MP}$(λ∈R)且$\overrightarrow{MP}$=$\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|cosA}$+$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|cosB}$.又已知|$\overrightarrow{CM}$|=$\frac{c}{2}$,a2+b2=2$\sqrt{2}$ab,则角C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设Sn为等差数列{an}的前n项和,若S7<0,a5>|a4|,则使Sn>0成立的最小正整数n为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在柱坐标系中画出下列各点,并把它们化成空间直角坐标系;
A(4,$\frac{3π}{4}$,2);
B(6,$\frac{π}{3}$,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的周期.
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值、最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出P的值为(  )
A.-1B.1C.0D.2016

查看答案和解析>>

同步练习册答案