精英家教网 > 高中数学 > 题目详情
已知圆内接四边形ABCD中,AB=3,BC=4,CD=5,AD=6,则cosA=
 
考点:余弦定理
专题:计算题,解三角形
分析:连接BD,利用余弦定理求出cosA,cosC的关系,结合圆内接四边形的对角和为180°,运用诱导公式,即可求出cosA的值.
解答: 解:连接BD,
由余弦定理得,BD2=9+36-2×3×6cosA=45-36cosA,
又BD2=16+25-2×4×5cosC=41-40cosC,
∵A+C=180°,∴cosC=-cosA,
∴45-36cosA=41+40cosA,解得cosA=
1
19

故答案为:
1
19
点评:本题主要考查了余弦定理,以及圆内接四边形的性质:对角互补,同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设i是虚数单位,复数
a+i
2-i
是纯虚数,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线a⊥平面α,b⊥β,且AB⊥a,AB⊥b,平面α∩β=直线c,求证:直线AB∥c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=-2x2-3x+1,x∈[-1,1],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b∈R,且a+b+1=0,则(a-2)2+(b-3)2的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a1+a3+a5=-102,a2+a4+a6=-99,以Sn表示{an}的前n项和,则使得Sn达到最小值的n是(  )
A、37和38B、38
C、36D、36和37

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为1的半圆O与等边△ABC夹在两平行线l1、l2之间.l∥l1,l与半圆相交于F、G两点,与三角形ABC两边相交于E、D两点,设弧
FG
的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的表达式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(n)满足f(0)=1,f(n)=n+f(n-1),n∈N+,求f(1),f(2),f(3),f(4).

查看答案和解析>>

科目:高中数学 来源: 题型:

从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有
 
种不同的放映方法.

查看答案和解析>>

同步练习册答案