精英家教网 > 高中数学 > 题目详情
9.下列叙述中正确的是(  )
A.命题“?x∈R,x+3>0”的否定是“?x∈R,x+3<0”
B.命题“若α=$\frac{π}{3}$,则cosα=$\frac{1}{2}$”的否命题是“若α=$\frac{π}{3}$,则cosα≠$\frac{1}{2}$”
C.在区间[-1,1]上随机取一个数x,则事件“2x≤$\sqrt{2}$”发生的概率为$\frac{1}{4}$
D.“命题p∧q为真”是“命题p∨q为真”的充分不必要条件

分析 A.利用命题的否定,即可判断出正误;
B.利用否命题的定义即可判断出正误;
C.在区间[-1,1]上随机取一个数x,则事件“2x≤$\sqrt{2}$”?“$-1≤x≤\frac{1}{2}$”,利用几何概率计算公式得出即可判断出正误;
D.利用复合命题真假的判定方法即可判断出正误.

解答 解:A.命题“?x∈R,x+3>0”的否定是“?x∈R,x+3≤0”,因此不正确;
B.“若α=$\frac{π}{3}$,则cosα=$\frac{1}{2}$”的否命题是“若α≠$\frac{π}{3}$,则cosα≠$\frac{1}{2}$”,因此不正确;
C.在区间[-1,1]上随机取一个数x,则事件“2x≤$\sqrt{2}$”?“$-1≤x≤\frac{1}{2}$”发生的概率为$\frac{3}{4}$,因此不正确;
D.“命题p∧q为真”是“命题p∨q为真”的充分不必要条件,正确.
故选:D.

点评 本题考查了简易逻辑的判定方法、几何概率,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到g(x)=sin(2x+$\frac{π}{2}$)的图象,则只需将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线kx2-y2=1的一条渐近线与直线3x-6y-2016=0平行,则这条双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{2}$C.4$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1、F2,左右顶点分别为A1,A2,P是双曲线左支上任意一点,则分别以线段PF2,A1A2为直径的两圆位置关系为(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在Rt△ABC中,∠C=90°,BC=2,D是BC的中点,则($\overrightarrow{AB}$-$\overrightarrow{AC}$)•$\overrightarrow{AD}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正项等比数列{an}{n∈N*},首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn∈[a,b],求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知tanα=3,则$\frac{sinα+2cosα}{sinα-2cosα}$的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.集合A,B满足条件A∩B≠∅,A∪B={1,2,3,4,5},当A≠B时,我们将(A,B)和(B,A)视为两个不同的集合对,则满足条件的集合对(A,B)共有211个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=cosθ+isinθ,θ∈R,则zn=cosnθ+isinnθ,n∈N*;若复数z=cos$\frac{π}{12}$+isin$\frac{π}{12}$,那么$\frac{{z}^{30}+1}{i-1}$=(  )
A.0B.iC.1D.-i

查看答案和解析>>

同步练习册答案