精英家教网 > 高中数学 > 题目详情
14.已知正项等比数列{an}{n∈N*},首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn∈[a,b],求b-a的最小值.

分析 (Ⅰ)利用等差数列和等比数列的通项公式、前n项和的意义即可得出;
(Ⅱ)利用等差数列和等比数列的前n项和公式、“错位相减法”即可得出,再根据数列的函数特征,即可求出b-a的最小值.

解答 解:(1)设正项等比数列{an}(n∈N*),又a1=3,∴an=3qn-1
∵S3+a3、S5+a5、S4+a4成等差数列,
∴2(S5+a5)=(S3+a3)+(S4+a4),
即2(a1+a2+a3+a4+2a5)=(a1+a2+2a3)+(a1+a2+a3+2a4),
化简得4a5=a3
∴4a1q4=a1q1,化为4q2=1,
解得q=$±\frac{1}{2}$,
∵an>0,
∴q=$\frac{1}{2}$,
∴an=3×($\frac{1}{2}$)n-1
(Ⅱ)由(Ⅰ)知,nan=3n×($\frac{1}{2}$)n-1
∴Tn=3×1+3×2×($\frac{1}{2}$)+3×3×($\frac{1}{2}$)2+…+3n×($\frac{1}{2}$)n-1
∴$\frac{1}{2}$Tn=3×$\frac{1}{2}$+3×2×($\frac{1}{2}$)2+3×3×($\frac{1}{2}$)3+…+3(n-1)×($\frac{1}{2}$)n-1+3n×($\frac{1}{2}$)n
两式相减得到$\frac{1}{2}$Tn=3×1+3×$\frac{1}{2}$+3×($\frac{1}{2}$)2+3×($\frac{1}{2}$)3+…+3×($\frac{1}{2}$)n-1-3n×($\frac{1}{2}$)n=3×$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$-3n×($\frac{1}{2}$)n=6-(6+3n)×($\frac{1}{2}$)n
∴Tn=12-(6+3n)×($\frac{1}{2}$)n-1
又nan=3n×($\frac{1}{2}$)n-1>0,
∴{Tn}单调递增,
∴{Tn}min=T1=3,
∴3≤Tn<12,
∵对任意正整数n,都有Tn∈[a,b],
∴a≤3,b≥12,
∴a的最大值为3,b的最大值为12,
故b-a的最小值=12-3=9

点评 本题考查了递推式的应用、等差数列的通项公式及前n项和公式及其性质、“错位相减法求和”、数列的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=-x3+x2-ax+1是R上的单调递减函数,则实数a的取值范围为(  )
A.[-3,+∞)B.(-∞,-$\frac{1}{3}$]C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x+$\frac{{a}^{2}}{2}$.
(1)若f′(2)=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)有一个零点,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确的个数是命题(  )
①命题“若cosx=cosy,则x=y”的逆否命题是真命题;
②命题“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1”;
③若命题p为真,命题?q为真,则命题p且q为真.
④命题“若x=3,则x2-2x-3=0”的否命题是“x≠3,则x2-2x-3≠0”
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列叙述中正确的是(  )
A.命题“?x∈R,x+3>0”的否定是“?x∈R,x+3<0”
B.命题“若α=$\frac{π}{3}$,则cosα=$\frac{1}{2}$”的否命题是“若α=$\frac{π}{3}$,则cosα≠$\frac{1}{2}$”
C.在区间[-1,1]上随机取一个数x,则事件“2x≤$\sqrt{2}$”发生的概率为$\frac{1}{4}$
D.“命题p∧q为真”是“命题p∨q为真”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若复数z=(m+1)-(m-3)i在复平面内对应的点在第一或第三象限,则实数m的取值范围是(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对于复数z1,z2,如果复数(z1-i)•z2=1,那么称z1是z2的“错位共轭复数”,则复数$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i的“错位共轭复数”z=(  )
A.$\frac{\sqrt{3}}{2}$+$\frac{3}{2}$iB.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$iC.$\frac{\sqrt{3}}{6}$+$\frac{1}{2}$iD.-$\frac{\sqrt{3}}{6}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合M={α|α=sin$\frac{(5m-9)π}{3}$,m∈Z},N={β|β=cos$\frac{5(9-2n)π}{6}$,n∈Z},则M与N的关系是(  )
A.M?NB.M?NC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n是奇数}\\{{a}_{n}-3n,n是偶数}\end{array}\right.$,设bn=a2n-$\frac{3}{2}$,Sn为数列{bn}的前n项和.
(1)求a2,a3,b1,b2
(2)证明数列{bn}是等比数列;
(3)求Sn

查看答案和解析>>

同步练习册答案