20£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$¾ùΪµ¥Î»ÏòÁ¿£¬ÇÒ$\overrightarrow{a}$¡Í$\overrightarrow{b}$£®
£¨1£©Èô´æÔÚʵÊý¦Ë£¬¦ÌʹµÃ$\overrightarrow{c}$=¦Ë$\overrightarrow{a}$+¦Ì$\overrightarrow{b}$£¬ÇóÖ¤¦Ë2+¦Ì2=1£»
£¨2£©Èô£¨$\overrightarrow{a}$-$\overrightarrow{c}$£©•£¨$\overrightarrow{b}$-$\overrightarrow{c}$£©¡Ü0£¬Çó|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÀûÓÃÒÑÖªµÃµ½Á½¸öÏòÁ¿µÄÄ£ÒÔ¼°ÊýÁ¿»ý£¬Ö»Òª½«$\overrightarrow{c}$=¦Ë$\overrightarrow{a}$+¦Ì$\overrightarrow{b}$Á½±ßƽ·½£¬Õ¹¿ªÕûÀí¼´µÃ£»
£¨2£©ÓÉÌâÒ⣬Éè$\overrightarrow{a}$=£¨1£¬0£©£¬$\overrightarrow{b}$=£¨0£¬1£©£¬$\overrightarrow{c}$=£¨x£¬y£©£¬ÓÉ£¨$\overrightarrow{a}$-$\overrightarrow{c}$£©•£¨$\overrightarrow{b}$-$\overrightarrow{c}$£©¡Ü0£¬µÃµ½ÏòÁ¿$\overrightarrow{c}$Âú×ãµÄµÈÁ¿¹ØÏµ£¬½áºÏËùÇóµÄ¼¸ºÎÒâÒå¿ÉµÃ£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÒòΪ$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$¾ùΪµ¥Î»ÏòÁ¿£¬ÇÒ$\overrightarrow{a}$¡Í$\overrightarrow{b}$£®ËùÒÔ${\overrightarrow{a}}^{2}$=1£¬${\overrightarrow{b}}^{2}$=1£¬$\overrightarrow{a}•\overrightarrow{b}$=0£¬
ÇÒ´æÔÚʵÊý¦Ë£¬¦ÌʹµÃ$\overrightarrow{c}$=¦Ë$\overrightarrow{a}$+¦Ì$\overrightarrow{b}$£¬Ôò${\overrightarrow{c}}^{2}=£¨¦Ë\overrightarrow{a}+¦Ì\overrightarrow{b}£©^{2}$=${¦Ë}^{2}{\overrightarrow{a}}^{2}+{¦Ì}^{2}{\overrightarrow{b}}^{2}+2¦Ë¦Ì\overrightarrow{a}•\overrightarrow{b}$=¦Ë2+¦Ì2=1£¬ËùÒÔ¦Ë2+¦Ì2=1£»
£¨2£©ÒòΪ$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$¾ùΪµ¥Î»ÏòÁ¿£¬ÇÒ$\overrightarrow{a}$¡Í$\overrightarrow{b}$£®ËùÒÔÉè$\overrightarrow{a}$=£¨1£¬0£©£¬$\overrightarrow{b}$=£¨0£¬1£©£¬$\overrightarrow{c}$=£¨x£¬y£©£¬
ÓÉ£¨$\overrightarrow{a}$-$\overrightarrow{c}$£©•£¨$\overrightarrow{b}$-$\overrightarrow{c}$£©¡Ü0£¬µÃµ½-x£¨1-x£©-y£¨1-y£©¡Ü0£¬ÕûÀíµÃ£¨x-$\frac{1}{2}$£©2+£¨y-$\frac{1}{2}$£©2¡Ü$\frac{1}{2}$£¬
ËùÒÔÏòÁ¿$\overrightarrow{c}$±íʾÒÔ£¨$\frac{1}{2}$£¬$\frac{1}{2}$£©£¬ÎªÔ²ÐÄ£¬$\frac{\sqrt{2}}{2}$Ϊ°ë¾¶µÄÔ²Ãæ£¬ÓÖ|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|=$\sqrt{£¨1-x£©^{2}+£¨1-y£©^{2}}$£¬
Óɼ¸ºÎÒâÒåµÃµ½ËüµÄ×î´óֵΪ$\sqrt{2}$£¬×îСֵΪ0£¬ËùÒÔ|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|µÄȡֵ·¶Î§Îª[0£¬$\sqrt{2}$]£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÒÔ¼°ÏòÁ¿´¹Ö±µÄÐÔÖÊÔËÓ㻣¨2£©ÖÐÔËÓÃÁË×ø±ê·¨µÄ˼Ï룮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$cos4x-sin4x£®
£¨1£©Çóº¯Êýf£¨x£©×îСÕýÖÜÆÚ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{12}$£¬$\frac{¦Ð}{6}$]Éϵĵ¥µ÷ÐÔ¼°ÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®£¨1-x£©10Õ¹¿ªÊ½Öк¬xµÄÆæÊýÏîµÄϵÊýÖ®ºÍÊÇ-516£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚ¡÷ABCÖУ¬ÒÑÖªtan$\frac{A+B}{2}$=sinC£¬ÔòÒÔϽáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®tanA•cotB=1B£®1£¼sinA+sinB¡Ü$\sqrt{2}$
C£®sin2A+cos2B=1D£®cos2A+cos2B=sin2C

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèÊýÁÐ{an}ÊǵȲîÊýÁУ¬Ê×ÏîΪ3£¬¹«²îΪ2£®
£¨1£©ÇóÊýÁÐ{an}µÄǰnÏîºÍ£®
£¨2£©ÇóÊýÁÐ{$\frac{1}{{S}_{n}}$}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC=1£¬¡ÏBAC=120¡ã£¬µãPÔÚÒÔAΪԲÐÄ£¬ABΪ°ë¾¶µÄÔ²»¡$\widehat{BC}$ÉÏÔ˶¯£®
£¨¢ñ£©Èô$\overrightarrow{PC}$•$\overrightarrow{PB}$È¡×îСֵ£¬Çó¡ÏBAPµÄ´óС£»
£¨¢ò£©Éè$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$£¬ÆäÖÐx£¬y¡ÊR£¬ÇóxyµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®½«²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=3-2t}\\{y=-1-4t}\end{array}\right.$£¨t£ºÎª²ÎÊý£©»¯ÎªÆÕͨ·½³ÌµÃµ½2x-y=7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ë®³ØµÄÈÝ»ýÊÇ20m3£¬Ë®³ØÀïµÄË®ÁúÍ·AºÍBµÄË®Á÷Ëٶȶ¼ÊÇ1m3/h£¬ËüÃÇÒ»ÖçÒ¹£¨0-24h£©ÄÚËæ»ú¿ªÆô£¬ÔòË®³Ø²»ÒçË®µÄ¸ÅÂÊ$\frac{25}{72}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¾ÝÈç±íËùʾµÄÑù±¾Êý¾Ý£¬µÃµ½»Ø¹éÖ±Ïß·½³Ì$\widehat{y}=\widehat{b}x+\widehat{a}$£¬ÆäÖÐ$\widehat{a}$=9.1£¬Ôò$\widehat{b}$=£¨¡¡¡¡£©
 x 2 4
 y26  3949  54
A£®9.4B£®9.5C£®9.6D£®9.7

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸