精英家教网 > 高中数学 > 题目详情
10.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为$\frac{{\sqrt{2}}}{2}$.

分析 根据体积,建立方程组,求出M的坐标,可得直线OM的斜率,利用基本不等式可得结论.

解答 解:设P(2pt,2pt),M(x,y),则$\left\{\begin{array}{l}{x-\frac{p}{2}=\frac{2p}{3}{t}^{2}-\frac{p}{6}}\\{y=\frac{2pt}{3}}\end{array}\right.$,
∴x=$\frac{2p}{3}{t}^{2}+\frac{p}{3}$,y=$\frac{2pt}{3}$,
∴kOM=$\frac{2t}{2{t}^{2}+1}$=$\frac{1}{t+\frac{1}{2t}}$≤$\frac{1}{2\sqrt{\frac{1}{2}}}$=$\frac{\sqrt{2}}{2}$,
当且仅当t=$\frac{1}{2t}$时取等号,
∴直线OM的斜率的最大值为$\frac{{\sqrt{2}}}{2}$.
故答案为:$\frac{{\sqrt{2}}}{2}$.

点评 本题考查抛物线的方程及运用,考查直线的斜率的最大值,考查基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某种种子每粒发芽的概率都为0.8,现播种了100粒,对于没有发芽的种子,每粒需再补种3粒,补种的种子数记为X.
(1)求X=30的概率(只列式即可);
(2)求随机变量X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知l1:ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,l2:$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}$(t为参数).
(1)求l1,l2交点P的极坐标.
(2)点A、B、C三点在椭圆$\frac{x^2}{4}$+y2=1上,O为坐标原点,若有∠AOB=∠BOC=∠COA=120°,求$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OB}|}^2}}}$+$\frac{1}{{{{|{OC}|}^2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}中,a7+a9=16,S11=66,则a12的值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知{an}为等差数列,a1+a2+a3=156,a2+a3+a4=147,{an}的前n项和为Sn,则使得Sn达到最大值的n是(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了解某校身高在1.60m~1.78m的高一学生的情况,随机地抽查了该校200名高一学生,得到如图1所示频率直方图.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为m,身高在1.66m~1.74m的学生数为n,则m,n的值分别为(  )
A.0.27,78B.0.27,156C.0.81,78D.0.09,83

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算:
(1)$\root{4}{(3-π)^{4}}$+(0.008)${\;}^{-\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×$(\frac{1}{\sqrt{2}})$-4
(2)若x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=$\sqrt{7}$,求$\frac{x+{x}^{-1}}{{x}^{2}+{x}^{-2}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α为锐角,若sin2α+cos2α=-$\frac{1}{5}$,则tanα=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数f(x)中,满足“对任意x1,x2∈(-∞,0),当x1<x2时,都有f(x1)<f(x2)”的是(  )
A.f(x)=4-2xB.f(x)=$\frac{1}{x-2}$C.f(x)=x2-2x-2D.f(x)=-|x|

查看答案和解析>>

同步练习册答案