精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax
x+2
,曲线y=f(x)在点(-1,f(-1))处的切线l垂直于直线x+2y-1=0,则实数a的值为(  )
A、1
B、-1
C、
1
4
D、-
1
4
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求出函数的导数,利用导数的几何意义以及直线垂直的等价条件,即可得到结论.
解答: 解:函数的导数f′(x)=
2a
(x+2)2

则在点(-1,f(-1))处的切线斜率k=f′(-1)=2a,
直线x+2y-1=0的斜率k=-
1
2

∵直线和切线垂直,
-
1
2
•2a=-1
,解得a=1,
故选:A
点评:本题主要考查函数的切线斜率的计算,利用导数的几何意义求出切线斜率是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在不等边三角形ABC中,角A,B,C的对边分别是a,b,c,其中a为最大边,如果sin2(B+C)<sin2B+sin2C,则角A的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足不等式(x+2)2+(y-3)2≤2,则|x+y|的最大值为(  )
A、2
2
-
1
B、2
2
+1
C、1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={1,2},B={2,3,4},则A∩B=(  )
A、{2}
B、{1,2}
C、{1,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,9x2-6x+1>0;命题q:?x∈R,sinx+cosx=
3
,则(  )
A、¬p是假命题
B、¬q是假命题
C、p∨q是真命题
D、(¬p)∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球O的表面积为12π,一个正方体的各顶点都在该球面上,则这个正方体的体积为(  )
A、3
3
B、6
6
C、8
D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x∈R,x2+x+1<0,命题q:?x∈(0,
π
2
),x>sinx,则下列命题正确的是(  )
A、p∧q
B、p∨(¬q)
C、(¬p)∧(¬q)
D、q∧(¬p)

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=mx的焦点与双曲线
x2
3
-y2=1的左焦点重合,则这条抛物线的方程为(  )
A、y2=4x
B、y2=-4x
C、y2=-4
2
x
D、y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:

生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.
(1)根据这个规律,写出生物体内碳14的含量p与死亡年数t之间的函数关系式.
(2)湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,试推算马王堆汉墓的年代.(精确到个位;辅助数据:log20.767≈-0.3827)

查看答案和解析>>

同步练习册答案