精英家教网 > 高中数学 > 题目详情
6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{3}$,且过点($\sqrt{2}$,$\sqrt{2}$)
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线c交于不同的两点A、B,且线段AB的中点在圆x2+y2=5上,求m的值.

分析 (1)由e=$\frac{c}{a}$=$\sqrt{3}$,点满足双曲线的方程,结合a,b,c的关系,可知a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,由此能求出双曲线方程;
(2)联立直线x-y+m=0和双曲线的方程,消去y,得x2-2mx-m2-2=0,故x1+x2=2m,所以AB中点(m,2m),代入圆方程能求出m的值.

解答 解:(1)由题意可得e=$\frac{c}{a}$=$\sqrt{3}$,
代入点($\sqrt{2}$,$\sqrt{2}$),可得$\frac{2}{{a}^{2}}$-$\frac{2}{{b}^{2}}$=1,
又a2+b2=c2
解得a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,
可得双曲线的方程为x2-$\frac{{y}^{2}}{2}$=1;
(2)直线x-y+m=0代入双曲线的方程2x2-y2=2,
消去y可得x2-2mx-m2-2=0,
△=4m2+4(m2+2)>0恒成立.
设A(x1,y1),B(x2,y2),
可得x1+x2=2m,
AB的中点坐标为(m,2m),
由线段AB的中点在圆x2+y2=5上,
可得m2+4m2=5,解得m=±1.

点评 本题主要考查双曲线标准方程,简单几何性质,直线与双曲线的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知正项数列{an}中,a1=1,a2=$\sqrt{3},2{a_n}^2={a_{n+1}}^2+{a_{n-1}}$2(n≥2),则a5=(  )
A.9B.6C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x3-3x2+1是减函数的单调区间为(  )
A.(2,+∞)B.(-∞,2)C.(-∞,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+bx+c在x=2处取得极值为c-6,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足约束条件$\left\{{\begin{array}{l}{x+y+1≥0}\\{{x^2}+{y^2}≤4}\\{xy≥0}\end{array}}\right.$,则z=2x+y的取值范围是(  )
A.$[-2,2\sqrt{5}]$B.[-2,0]C.$[-2\sqrt{5},2]$D.$[\frac{{2\sqrt{5}}}{5},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.5名旅客,安排在3个客房里,每个客房至少安排1名旅客,则不同方法有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$y=b+{a^{{x^2}+2x}}$(a,b是常数,a>0且a≠1)在区间$[{-\frac{3}{2},0}]$上有最大值3,最小值为$\frac{5}{2}$.试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于集合M,N定义M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).设M={y|y=x2-4x,x∈R},N={y|y=-3x,x∈R},则M⊕N=(-∞,-4)∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+a($\frac{1}{x}$-1),其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;
(2)求证:对于任意的n∈N*,且n>1时,都有lnn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$恒成立.

查看答案和解析>>

同步练习册答案