精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lnx+a($\frac{1}{x}$-1),其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;
(2)求证:对于任意的n∈N*,且n>1时,都有lnn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$恒成立.

分析 (1)求导,由题意可知:f′(x)≥0在[1,+∞)上恒成立,则a≤1;
(2)由a=1,则f(x)=lnx+$\frac{1}{x}$-1在[1,+∞),则f($\frac{n}{n-1}$)>f(1),则lnn-ln(n-1)>$\frac{1}{n}$,对任意n∈N*,且n>1恒成立,根据对数的运算性质,则lnn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$恒成立.

解答 解:(1)f(x)=lnx+a($\frac{1}{x}$-1),求导f′(x)=$\frac{x-a}{{x}^{2}}$,
由已知,f′(x)≥0在[1,+∞)上恒成立,
则a≤x在[1,+∞)上恒成立,
∴a≤1,
实数a的取值范围(0,1];
(2)证明:由(1)可知:a=1,则f(x)=lnx+$\frac{1}{x}$-1在[1,+∞)递增,
当n>1时,由$\frac{n}{n-1}$>1,则f($\frac{n}{n-1}$)>f(1),
即lnn-ln(n-1)>$\frac{1}{n}$,对任意n∈N*,且n>1恒成立,
lnn=[lnn-ln(n-1)]+[ln(n-1)-ln(n-2)]+…+[ln3-ln2]+[ln2-ln1>$\frac{1}{n}$+$\frac{1}{n-1}$+…+$\frac{1}{3}$+$\frac{1}{2}$,
∴对于任意的n∈N*,且n>1时,都有lnn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$恒成立.

点评 本题考查导数的综合应用,考查不等式恒成立,对数的运算性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{3}$,且过点($\sqrt{2}$,$\sqrt{2}$)
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线c交于不同的两点A、B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x3+asinx+b为奇函数(a,b为常数)且f($\frac{π}{2}$)=$\frac{{π}^{3}}{8}$+1,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知α为锐角,且sin2α+$\sqrt{3}$cos2α=1,函数f(x)=2x•cos(α-$\frac{π}{4}$)+sin(α+$\frac{π}{4}$).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)数列{an}的首项a1=1,an+1=f(an)(n∈N*),求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.为了得到函数$y={log_2}\frac{x+1}{4}$的图象,只需把函数y=log2x的图象上所有的点(  )
A.向左平移1个单位长度,再向上平移2个单位长度
B.向右平移1个单位长度,再向上平移2个单位长度
C.向左平移1个单位长度,再向下平移2个单位长度
D.向右平移1个单位长度,再向下平移2个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=Asin(ωx+ϕ)+m的最大值为4,最小值为0,最小正周期为π,直线$x=\frac{π}{6}$是其图象的一条对称轴,则下面各式中符合条件的解析式是(  )
A.$y=4sin(2x+\frac{π}{6})$B.$y=-2sin(2x+\frac{π}{6})+2$C.$y=-2sin(x+\frac{π}{3})+2$D.$y=2sin(2x+\frac{π}{3})+2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=e2x-4aex-2ax,g(x)=x2+5a2,a∈R.
(1)若a=1,求f(x)的递增区间;
(2)若f(x)在R上单调递增,求a的取值范围;
(3)记F(x)=f(x)+g(x),求证:$F(x)≥\frac{{4{{(1-ln2)}^2}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知变量x,y满足不等式组$\left\{\begin{array}{l}{3x+y-15≤0,}&{\;}\\{x-3y-5≤0,}&{\;}\\{x≥a,}&{\;}\end{array}\right.$使得y≤3x恒成立的实数a的最小值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若输入n=4,执行如图所示的程序框图,输出的s=(  )
A.10B.16C.20D.35

查看答案和解析>>

同步练习册答案