精英家教网 > 高中数学 > 题目详情
11.为了得到函数$y={log_2}\frac{x+1}{4}$的图象,只需把函数y=log2x的图象上所有的点(  )
A.向左平移1个单位长度,再向上平移2个单位长度
B.向右平移1个单位长度,再向上平移2个单位长度
C.向左平移1个单位长度,再向下平移2个单位长度
D.向右平移1个单位长度,再向下平移2个单位长度

分析 利用对数的运算性质化简平移目标函数的解析式,然后根据“左加右减,上加下减”的原则,可得答案.

解答 解:∵函数$y={log_2}\frac{x+1}{4}$=log2(x+1)-log24=log2(x+1)-2,
故其图象可由函数y=log2x的图象向左平移1个单位长度,再向下平移2个长度单位得到,
故选C.

点评 本题以对数函数图象平移为载体,考查了对数的运算性质,其中利用对数的运算性化间平移目标函数的解析式,是解答的核心.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足约束条件$\left\{{\begin{array}{l}{x+y+1≥0}\\{{x^2}+{y^2}≤4}\\{xy≥0}\end{array}}\right.$,则z=2x+y的取值范围是(  )
A.$[-2,2\sqrt{5}]$B.[-2,0]C.$[-2\sqrt{5},2]$D.$[\frac{{2\sqrt{5}}}{5},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正方体ABCD-A1B1C1D1中,与AC成异面直线且夹角为45°棱的条数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f1(x)=x2-2|x|,f2(x)=x+2,设g(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$-$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$,若 a,b∈[-2,4],且当x1,x2∈[a,b](x1≠x2)时,$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,则b-a的最大值为(  )
A.6B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z=$\frac{1-\sqrt{2}i}{i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+a($\frac{1}{x}$-1),其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;
(2)求证:对于任意的n∈N*,且n>1时,都有lnn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{3+4i}{i}$的虚部为(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)是定义在R上的奇函数,且f(2-x)=f(x),当-1≤x<0时,f(x)=log2(-3x+1),则f(2017)的值为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体的三视图,如图所示,则该组合体的体积为(  )
A.$\frac{π}{3}$+2B.$\frac{π}{3}$+$\frac{2}{3}$C.π$+\frac{2}{3}$D.π+2

查看答案和解析>>

同步练习册答案