精英家教网 > 高中数学 > 题目详情
(理科)
3
tan21°tan39°-tan159°+tan39°=(  )
A、
3
B、-
3
C、
3
3
D、-
3
3
考点:两角和与差的正切函数
专题:三角函数的求值
分析:由两角和的正切公式变形可得tan21°+tan39°=tan(21°+39°)(1-tan21°tan39°),结合诱导公式代入要求的式子化简即可.
解答: 解:∵tan(21°+39°)=
tan21°+tan39°
1-tan21°tan39°

3
tan21°tan39°-tan159°+tan39°
=
3
tan21°tan39°+tan21°+tan39° 
=
3
tan21°tan39°+tan(21°+39°)(1-tan21°tan39°)
=
3
tan21°tan39°+tan60°(1-tan21°tan39°)
=
3
tan21°tan39°+
3
(1-tan21°tan39°)
=
3
tan21°tan39°+
3
-
3
tan21°tan39°=
3

故选:A
点评:本题考查两角和的正切公式,正确变形是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a6=6,a9=9,那么a3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ex-lnx的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为
a1
a2
a3
a4
a5
;以D为起点,其余顶点为终点的向量分别为
d1
d2
d3
d4
d5
.记m=(
ai
+
aj
+
ak
)•(
dr
+
ds
+
dt
),其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m的最小值=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5,6中任取3个数字组成无重复数字的三位数,其中若同时含有1和3时,3必须放在1的前面,若含有1或3其中之一时,则应该将其排在其他数字的前面,这样的不同三位数的个数为
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a9=10,则a2+a8的值为(  )
A、5B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=
4
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an≤1
,则a2013=(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3=(  )
A、15B、5C、10D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,并满足以下条件:
(1)f(x)=3axg(x),(a>0,a≠1);
(2)g(x)≠0;
(3)f(x)g′(x)<f′(x)g(x).
f(-1)
g(-1)
+
f(1)
g(1)
=10,则a=(  )
A、
1
3
B、3
C、
10
3
D、
1
3
或3

查看答案和解析>>

同步练习册答案