精英家教网 > 高中数学 > 题目详情
已知f(x),g(x)都是定义在R上的函数,并满足以下条件:
(1)f(x)=3axg(x),(a>0,a≠1);
(2)g(x)≠0;
(3)f(x)g′(x)<f′(x)g(x).
f(-1)
g(-1)
+
f(1)
g(1)
=10,则a=(  )
A、
1
3
B、3
C、
10
3
D、
1
3
或3
考点:函数的值
专题:导数的概念及应用
分析:先根据
f(-1)
g(-1)
+
f(1)
g(1)
=10得到含a的式子,求出a的两个值,再由已知,利用导数判断函数
f(x)
g(x)
=3ax
的单调性求a的范围,判断a的两个之中哪个成立即可.
解答: 解:由
f(-1)
g(-1)
+
f(1)
g(1)
=10,得3a+3a-1=10,
所以a=3或a=
1
3

又由f(x)•g′(x)<f′(x)•g(x),即f(x)g′(x)-f′(x)g(x)<0,
也就是(
f(x)
g(x)
)′
=-
f(x)g′(x)-f′(x)g(x)
g2(x)
>0,说明函数
f(x)
g(x)
=3ax
是增函数,
即a>1.∴a=3.
故选:B.
点评:本题考查了应用导数判断函数的单调性,做题时应认真观察.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)
3
tan21°tan39°-tan159°+tan39°=(  )
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x<3x;命题q:?x∈R,2x≥1+x2,则命题p,q的真假是(  )
A、p真q真B、p真q假
C、p假q真D、p假q假

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面EFGH为长方体ABCD-A1B1C1D1的截面,E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,EH∥A1D1,则四边形EFGH的形状是(  )
A、平行四边形B、梯形
C、菱形D、矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

由①y=2x+5是一次函数;②y=2x+5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是(  )
A、②①③B、③①②
C、①②③D、②③①

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上一点,设点P到直线x=-1的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的最小值是(  )
A、5
B、4
C、
11
5
5
D、
11
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=2,前n项和为Sn,且-a2,Sn,2an+1成等差数列.
(1)求数列{an}的通项公式;
(2)记bn=
an
(an-1)(an+1-1)
,求证:数列{bn}的前n项和Tn∈[
2
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+3cosα=0,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|0<3-x≤4},集合B={x|x2-x-6≤0}
(Ⅰ)求集合A,B
(Ⅱ)求(∁UA)∩B.

查看答案和解析>>

同步练习册答案