精英家教网 > 高中数学 > 题目详情
6.角A是△ABC的一个内角,若命题p:A<$\frac{π}{3}$,命题q:sinA<$\frac{\sqrt{3}}{2}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据三角函数的性质和充分条件和必要条件的定义即可判断

解答 解:A为△ABC的内角,则A∈(0,π),若命题p:A<$\frac{π}{3}$,命题q:sinA<$\frac{\sqrt{3}}{2}$成立,
反之当sinA<$\frac{\sqrt{3}}{2}$,则A=$\frac{5π}{6}$满足,
故p是q的充分不必要条件,
故选:A

点评 本题三角函数值为载体,考查了充分必要条件的判断,属于基础题.训练掌握三角形内角的正、余弦函数符号与特殊角的三角函数值,是解决此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.一个多面体的直观图和三视图如图所示,M是AB的 中点,一只蜜蜂在该几何体内自由飞舞,则它飞入几 何体F-AMCD内的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且$\frac{BR}{RH}$=λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.
(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为$\frac{{2\sqrt{2}}}{5}$?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中,正确的是(  )
A.数据5,4,4,3,5,2的众数是4
B.若随机变量X~N(3,1)则P(X<4)=p,则(2<X<4)=1-2p
C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半
D.频率分布直方图中各小长方形的面积等于相应各组的频数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正项等比数列{an}中有$\root{21}{{a}_{1993}•{a}_{1994}•{a}_{1995}…{a}_{2013}}$=$\root{4005}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{4005}}$,则在等差数列{bn}中,类似的正确的结论有$\frac{{b}_{1993}+{b}_{1994}+…+{b}_{2013}}{21}$=$\frac{{b}_{1}+{b}_{2}+…+{b}_{4005}}{4005}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数x,y满足条件$\left\{\begin{array}{l}{x≤2}\\{x+y≥2}\\{2x-y≥2}\end{array}\right.$,则$\frac{y+x}{y+2x}$的取值范围是(  )
A.[0,1]B.[$\frac{1}{3}$,1]C.[$\frac{1}{2}$,$\frac{2}{3}$]D.[$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|-1<x<2},B={x|y=lg(x-1)},则A∩(∁RB)=(  )
A.(-1,1)B.[2,+∞)C.(-1,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2$\sqrt{3}$.
(1)求椭圆C的方程;
(2)过点D(0,-2)作直线l与椭圆C交于A、B两点,点N满足$\overrightarrow{ON}=\overrightarrow{OA}+\overrightarrow{OB}$(O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式|x-m|≤n的解集为{x|0≤x≤4}.
(1)求实数m、n的值;
(2)设a>0,b>0,且a+b=$\frac{m}{a}$+$\frac{n}{b}$,求a+b的最小值.

查看答案和解析>>

同步练习册答案