精英家教网 > 高中数学 > 题目详情
17.如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且$\frac{BR}{RH}$=λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.
(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为$\frac{{2\sqrt{2}}}{5}$?若存在,求出λ的值;若不存在,请说明理由.

分析 (I)若λ=2,证明PD⊥平面PEF,GR∥PD,即可证明:GR⊥平面PEF;
(Ⅱ)建立如图所示的坐标系,求出平面DEF的一个法向量,利用直线FR与平面DEF所成角的正弦值为$\frac{{2\sqrt{2}}}{5}$,建立方程,即可得出结论.

解答 (I)证明:由题意,PE,PF,PD三条直线两两垂直,∴PD⊥平面PEF,
图1中,EF∥AC,∴GB=2GH,
∵G为BD中点,∴DG=2GH.
图2中,∵$\frac{PR}{GH}=\frac{BR}{RH}$=2,∴△PDH中,GR∥PD,
∴GR⊥平面PEF;
(Ⅱ)解:由题意,建立如图所示的坐标系,设PD=4,则P(0,0,0),F(2,0,0),E(0,2,0),D(0,0,4),∴H(1,1,0),
∵$\frac{PR}{RH}$=λ,∴R($\frac{λ}{1+λ}$,$\frac{λ}{1+λ}$,0),
∴$\overrightarrow{RF}$=($\frac{2+λ}{1+λ}$,-$\frac{λ}{1+λ}$,0),
∵$\overrightarrow{EF}$=(2,-2,0),$\overrightarrow{DE}$=(0,2,-4),
设平面DEF的一个法向量为$\overrightarrow{m}$=(x,y,z),则$\left\{\begin{array}{l}{2x-2y=0}\\{2y-4z=0}\end{array}\right.$,取$\overrightarrow{m}$=(2,2,1),
∵直线FR与平面DEF所成角的正弦值为$\frac{{2\sqrt{2}}}{5}$,
∴$\frac{\frac{4}{1+λ}}{3\sqrt{(\frac{2+λ}{1+λ})^{2}+(-\frac{λ}{1+λ})^{2}}}$=$\frac{2\sqrt{2}}{5}$,
∴λ=$\frac{1}{3}$,
∴存在正实数λ=$\frac{1}{3}$,使得直线FR与平面DEF所成角的正弦值为$\frac{{2\sqrt{2}}}{5}$.

点评 本题考查了线面垂直的判定,线面角的计算,考查向量方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知奇函数f(x)=$\left\{\begin{array}{l}{\frac{{e}^{x}}{x}-1(x>0)}\\{h(x)(x<0)}\end{array}\right.$,则函数h(x)的最大值为1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定积分${∫}_{0}^{-1}$($\sqrt{1-{x}^{2}}$+x)dx的值为$\frac{π}{4}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD是梯形,AB∥CD,AB⊥AD,SA⊥平面ABCD,E、F分别是SC、SD的中点,SA=AD=2CD=4AB=4.
(1)求证:EF∥平面SAB;
(2)求证:BE⊥平面SCD;
(3)求二面角B-SD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四边形ABCD中,△BCD为正三角形,AD=AB=2,BD=2$\sqrt{3}$,AC与BD交于O点.将△ACD沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为θ,且P点在平面ABCD内的射影落在△ACD内.
(Ⅰ)求证:AC⊥平面PBD;
(Ⅱ)若θ=$\frac{π}{3}$时,求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集A={x|x≤9,x∈N*}集合B={x|0<x<7},则A∩B=(  )
A.{x|0<x<7}B.{x|1≤x≤6}C.{1,2,3,4,5,6}D.{7,8,9}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个正三棱柱的正视图如图所示,已知它的体积为3,则该正三棱柱的高为(  )
A.1B.$\sqrt{3}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.角A是△ABC的一个内角,若命题p:A<$\frac{π}{3}$,命题q:sinA<$\frac{\sqrt{3}}{2}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若满足条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥a}\end{array}\right.$的整点(x,y)恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为-1.

查看答案和解析>>

同步练习册答案