精英家教网 > 高中数学 > 题目详情
9.一个正三棱柱的正视图如图所示,已知它的体积为3,则该正三棱柱的高为(  )
A.1B.$\sqrt{3}$C.3D.3$\sqrt{3}$

分析 由正视图知三棱柱的底面正三角形边长为2,
设高为h,根据三棱柱的体积求出h的值.

解答 解:由正视图知,该三棱柱的底面正三角形边长为2,
设高为h,则它的体积为
V=$\frac{1}{2}$×22×sin$\frac{π}{3}$•h=$\sqrt{3}$h=3,
h=$\sqrt{3}$,即三棱柱的高为$\sqrt{3}$.
故选:B.

点评 本题考查了立体几何中的三视图以及空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=4cosωx•sin(ωx+\frac{π}{4})$(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)=\frac{sinx}{|sinx|}+\frac{2cosx}{|cosx|}+\frac{3tanx}{|tanx|}$的值域为A,则集合A的子集个数为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且$\frac{BR}{RH}$=λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.
(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为$\frac{{2\sqrt{2}}}{5}$?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}满足a1+a2=6,a4+a5=48,则数列{an}前10项的和为S10=(  )
A.1022B.1023C.2046D.2047

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中,正确的是(  )
A.数据5,4,4,3,5,2的众数是4
B.若随机变量X~N(3,1)则P(X<4)=p,则(2<X<4)=1-2p
C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半
D.频率分布直方图中各小长方形的面积等于相应各组的频数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正项等比数列{an}中有$\root{21}{{a}_{1993}•{a}_{1994}•{a}_{1995}…{a}_{2013}}$=$\root{4005}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{4005}}$,则在等差数列{bn}中,类似的正确的结论有$\frac{{b}_{1993}+{b}_{1994}+…+{b}_{2013}}{21}$=$\frac{{b}_{1}+{b}_{2}+…+{b}_{4005}}{4005}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|-1<x<2},B={x|y=lg(x-1)},则A∩(∁RB)=(  )
A.(-1,1)B.[2,+∞)C.(-1,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
善于使用学案不善于使用学案总计
学习成绩优秀40
学习成绩一般30
总计100
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)利用分层抽样的方法从善于使用学案的同学中随机抽取6人,从这6人中抽出3人继续调查,设抽出学习成绩优秀的人数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案