精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=3sin(${\frac{1}{2}x+\frac{π}{6}}$),
(1)若点P(1,-$\sqrt{3}$)在角α的终边上,求$f(2α-\frac{π}{3})$的值;
(2)若x∈[-$\frac{2π}{3}$,$\frac{4π}{3}$],求f(x)的值域.

分析 (1)由条件利用任意角的三角函数的定义求得sinα的值,可得f(2α-$\frac{π}{3}$)的值.
(2)利用正弦函数的定义域和值域,求得f(x)的值域.

解答 解:(1)∵函数f(x)=3sin(${\frac{1}{2}x+\frac{π}{6}}$),点$P(1,-\sqrt{3})$在角α的终边上,∴$sinα=\frac{{-\sqrt{3}}}{{\sqrt{{1^2}+{{(-\sqrt{3})}^2}}}}=-\frac{{\sqrt{3}}}{2}$,∴f(2α-$\frac{π}{3}$)=3sin(α-$\frac{π}{6}$+$\frac{π}{6}$)=3sinα=-$\frac{3\sqrt{3}}{2}$.
(2)∵$x∈[-\frac{2π}{3},\frac{4π}{3}]$,∴$\frac{1}{2}x+\frac{π}{6}∈[-\frac{π}{6},\frac{5π}{6}]$,∴$-\frac{1}{2}≤sin(\frac{1}{2}x+\frac{π}{6})≤1$,
∴$-\frac{3}{2}≤3sin(\frac{1}{2}x+\frac{π}{6})≤3$,即 函数的值域为$[-\frac{3}{2},3]$.

点评 本题主要考查任意角的三角函数的定义,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)在R上可导,其部分图象如图所示,设$\frac{f(2)-f(1)}{2-1}$=a,则下列不等式正确的是(  )
A.f′(1)<f′(2)<aB.f′(1)<a<f′(2)C.f′(2)<f′(1)<aD.a<f′(1)<f′(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在复平面内,复数$\frac{2i}{1-i}$对应的点到直线3x-4y+2=0距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若${\vec e_1}$,${\vec e_2}$是夹角为60°的两个单位向量,则$\vec a$=2${\vec e_1}$+${\vec e_2}$;$\vec b$=-3${\vec e_1}$+2${\vec e_2}$的夹角为(  )
A.60°B.30°C.150°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.近几年来,我国地区经常出现雾霾天气,某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止组织集体活动,若无雾霾则组织集体活动.预报得知,这一地区在未来一周从周一到周五5天的课间操时间出现雾霾的概率是:前3天均为50%,后2天均为80%,且每一天出现雾霾与否是相互独立的.
(1)求未来一周5天至少一天停止组织集体活动的概率;
(2)求未来一周5天不需要停止组织集体活动的天数X的分布列;
(3)用η表示该校未来一周5天停止组织集体活动的天数,记“函数f(x)=x2-ηx-1在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.直线SC⊥面ABC,AB⊥BC,且AB=BC=1,SA=2,E为SA中点,F为点C在线BS上的射影.
(Ⅰ)求证:CF⊥面SAB;
(Ⅱ)求三棱锥S-CEF的体积;
(Ⅲ)求面CEF与面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x满足C18x=C183x-6,则x的取值集合为{3,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.微信是现代生活进行信息交流的重要工具,随机对使用微信的60人进行了统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信达人”,不超过2两小时的人被定义为“非微信达人”,己知“非微信达人”与“微信达人”人数比恰为3:2.
(1)确定x,y,p,q的值,并补全须率分布直方图;
(2)为进一步了解使用微信对自己的日不工作和生活是否有影响,从“微信达人”和“非微信达人”60人中用分层抽样的方法确定10人,若需从这10人中随积选取3人进行问卷调查,设选取的3人中“微信达人”的人数为X,求X的分布列和数学期望.
使用微信时间(单位:小时) 频数频率 
 (0,0.5] 3 0.05
 (0.5,1] x p
 (1,1.5] 9 0.15
 (1.5,2] 15 0.25
 (2,2.5] 18 0.30
 (2.5,3] y q
 合计 601.00

查看答案和解析>>

同步练习册答案