20£®Î¢ÐÅÊÇÏÖ´úÉú»î½øÐÐÐÅÏ¢½»Á÷µÄÖØÒª¹¤¾ß£¬Ëæ»ú¶ÔʹÓÃ΢ÐŵÄ60È˽øÐÐÁËͳ¼Æ£¬µÃµ½ÈçÏÂÊý¾Ýͳ¼Æ±í£¬Ã¿ÌìʹÓÃ΢ÐÅʱ¼äÔÚÁ½Ð¡Ê±ÒÔÉϵÄÈ˱»¶¨ÒåΪ¡°Î¢ÐÅ´ïÈË¡±£¬²»³¬¹ý2Á½Ð¡Ê±µÄÈ˱»¶¨ÒåΪ¡°·Ç΢ÐÅ´ïÈË¡±£¬¼ºÖª¡°·Ç΢ÐÅ´ïÈË¡±Ó롰΢ÐÅ´ïÈË¡±ÈËÊý±ÈǡΪ3£º2£®
£¨1£©È·¶¨x£¬y£¬p£¬qµÄÖµ£¬²¢²¹È«ÐëÂÊ·Ö²¼Ö±·½Í¼£»
£¨2£©Îª½øÒ»²½Á˽âʹÓÃ΢ÐŶÔ×Ô¼ºµÄÈÕ²»¹¤×÷ºÍÉú»îÊÇ·ñÓÐÓ°Ï죬´Ó¡°Î¢ÐÅ´ïÈË¡±ºÍ¡°·Ç΢ÐÅ´ïÈË¡±60ÈËÖÐÓ÷ֲã³éÑùµÄ·½·¨È·¶¨10ÈË£¬ÈôÐè´ÓÕâ10ÈËÖÐËæ»ýѡȡ3È˽øÐÐÎʾíµ÷²é£¬ÉèѡȡµÄ3ÈËÖС°Î¢ÐÅ´ïÈË¡±µÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
ʹÓÃ΢ÐÅʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£© ÆµÊýƵÂÊ 
 £¨0£¬0.5] 3 0.05
 £¨0.5£¬1] x p
 £¨1£¬1.5] 9 0.15
 £¨1.5£¬2] 15 0.25
 £¨2£¬2.5] 18 0.30
 £¨2.5£¬3] y q
 ºÏ¼Æ 601.00

·ÖÎö £¨1£©¸ù¾Ý·Ö²¼Ö±·½Í¼¡¢ÆµÂÊ·Ö²¼±íµÄÐÔÖÊ£¬Áгö·½³Ì×飬ÄÜÈ·¶¨x£¬y£¬p£¬qµÄÖµ£¬²¢²¹È«ÐëÂÊ·Ö²¼Ö±·½Í¼£®
£¨2£©Ó÷ֲã³éÑùµÄ·½·¨£¬´ÓÖÐѡȡ10ÈË£¬ÔòÆäÖС°Íø¹º´ïÈË¡±ÓÐ4ÈË£¬¡°·ÇÍø¹º´ïÈË¡±ÓÐ6ÈË£¬¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬ÓÐ
$\left\{\begin{array}{l}{3+x+9+15+18+y=60}\\{\frac{18+y}{3+x+9+15}=\frac{2}{3}}\end{array}\right.$£¬
½âµÃx=9£¬y=6£¬
¡àp=0.15£¬q=0.10£¬
²¹È«ÆµÂÊ·Ö²¼Í¼ÓÐÓÒͼËùʾ£®
£¨2£©Ó÷ֲã³éÑùµÄ·½·¨£¬´ÓÖÐѡȡ10ÈË£¬ÔòÆäÖС°Íø¹º´ïÈË¡±ÓÐ10¡Á$\frac{2}{5}$=4ÈË£¬¡°·ÇÍø¹º´ïÈË¡±ÓÐ10¡Á$\frac{3}{5}$=6ÈË£¬
¡à¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=$\frac{{C}_{4}^{0}{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$£¬
P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{6}^{2}}{{C}_{10}^{3}}$=$\frac{1}{2}$£¬
P£¨¦Î=2£©=$\frac{{C}_{4}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{3}{10}$£¬
P£¨¦Î=3£©=$\frac{{C}_{4}^{3}{C}_{6}^{0}}{{C}_{10}^{3}}$=$\frac{1}{30}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 1 2 3
 P $\frac{1}{6}$ $\frac{1}{2}$ $\frac{3}{10}$ $\frac{1}{30}$
E¦Î=$0¡Á\frac{1}{6}+1¡Á\frac{1}{2}+2¡Á\frac{3}{10}+3¡Á\frac{1}{30}$=$\frac{6}{5}$£®

µãÆÀ ±¾Ì⿼²é¶Áͼ±í¡¢·Ö²ã³éÑù¡¢¸ÅÂÊ¡¢ÀëÉ¢ÐÍËæ»ú±äÁ¿·Ö²¼ÁÐÒÔ¼°ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËÓøÅÂÊͳ¼ÆÖªÊ¶½â¾ö¼òµ¥Êµ¼ÊÎÊÌâµÄÄÜÁ¦£¬Êý¾Ý´¦ÀíÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=3sin£¨${\frac{1}{2}x+\frac{¦Ð}{6}}$£©£¬
£¨1£©ÈôµãP£¨1£¬-$\sqrt{3}$£©ÔڽǦÁµÄÖÕ±ßÉÏ£¬Çó$f£¨2¦Á-\frac{¦Ð}{3}£©$µÄÖµ£»
£¨2£©Èôx¡Ê[-$\frac{2¦Ð}{3}$£¬$\frac{4¦Ð}{3}$]£¬Çóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=x2+ax+b£¨a£¬b¡ÊR£©£®
£¨1£©ÇóÖ¤£ºf£¨-$\frac{a}{2}$+1£©¡Üf£¨a2+$\frac{5}{4}$£©£»
£¨2£©¢ÙÇó£ºf£¨1£©+f£¨3£©-2f£¨2£©£» 
¢ÚÇóÖ¤£º|f£¨1£©|£¬|f£¨2£©|£¬|f£¨3£©|ÖÐÖÁÉÙÓÐÒ»¸ö²»Ð¡ÓÚ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬AC=AC1=B1C=B1C1=2£¬AC¡ÍAC1£¬B1C¡ÍB1C1£¬OΪCC1µÄÖе㣮
£¨1£©ÇóÖ¤£ºBB1¡ÍAB1£»
£¨2£©ÈôAB=2$\sqrt{3}$£¬ÇóÆ½ÃæABCÓëÆ½ÃæAOB1Ëù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®·ÇÁãÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|=1£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÏÂÁÐÆ½ÃæÇøÓòËù¶ÔÓ¦µÄ¶þÔªÒ»´Î²»µÈʽ£¨×飩·Ö±ðΪ£º

£¨1£©$\left\{\begin{array}{l}{-1¡Üx¡Ü1}\\{-1¡Üy¡Ü1}\end{array}\right.$£¬£»£¨2£©x+y£¼1£»£¨3£©$\left\{\begin{array}{l}{y¡Üx}\\{y£¾-x}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÉèÅ×ÎïÏßC£ºx2=4yµÄ½¹µãΪF£¬Ð±ÂÊΪkµÄÖ±Ïßl¾­¹ýµãF£¬ÈôÅ×ÎïÏßCÉÏ´æÔÚËĸöµãµ½Ö±ÏßlµÄ¾àÀëΪ2£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-$\sqrt{3}$£©¡È£¨$\sqrt{3}$£¬+¡Þ£©B£®£¨-$\sqrt{3}$£¬-1£©¡È£¨1£¬$\sqrt{3}$£©C£®£¨-$\sqrt{3}$£¬$\sqrt{3}$£©D£®£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x¡Ü0}\\{2x+y¡Ý1}\\{x+y¡Ü2}\end{array}\right.$£¬Ôòz=3x+yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ËÄÌõÖ±ÏßÿÁ½Ìõ¶¼Ïཻ£¬ÇÒÈÎÈýÌõ¶¼²»½»ÓÚÒ»µã£¬ËüÃÇ¿ÉÈ·¶¨µÄÆ½Ãæ¸öÊýΪ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸