分析 (1)由过点P(1,-2)的直线l的倾斜角为45°,可得直线l的参数方程.曲线C的极坐标方程为ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,利用互化公式可得直角坐标方程.
(2)把直线l的参数方程代入抛物线方程可得:t2-6$\sqrt{2}$t+4=0.利用根与系数的关系、参数的几何意义即可得出.
解答 解:(1)∵过点P(1,-2)的直线l的倾斜角为45°,可得直线l的参数方程为:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
曲线C的极坐标方程为ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,可得直角坐标方程:y2=2x.
(2)把直线l的参数方程代入抛物线方程可得:t2-6$\sqrt{2}$t+4=0.
∴t1t2=4.
∴|PA|•|PB|=|t1t2|=4.
点评 本题考查了极坐标与直角坐标方程的互化公式、直线的参数方程及其应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1或-3 | C. | 3 | D. | -1或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AB}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$ | B. | $\overrightarrow{AB}$=$\overrightarrow{OA}$-$\overrightarrow{OB}$ | C. | $\overrightarrow{AB}$-$\overrightarrow{BA}$=$\overrightarrow 0$ | D. | $\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com