精英家教网 > 高中数学 > 题目详情
14.已知在△ABC中,B=120°,AB=2,A的角平分线AD=$\sqrt{6}$,则AC=2$\sqrt{3}$.

分析 由题意,B=120°,AB=2,A的角平分线AD=$\sqrt{6}$,利用正弦定理求解∠BDA,在求出∠A.可得∠C,正弦定理可得AC 长度.

解答 解:由题意,B=120°,AB=2,A的角平分线AD=$\sqrt{6}$,
由正弦定理:$\frac{AD}{sinB}=\frac{AB}{sin∠ADB}$,可得∠ADB=45°.
那么∠ADC=135°.
∴∠BAD=15°,
∴A=30°.
∴C=30°.
由正弦定理:$\frac{AC}{sin∠ADC}=\frac{AD}{sinC}$,
可得AC=2$\sqrt{3}$.

点评 本题考查了正弦定理和解三角形的灵活运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
人数数学
优秀良好及格
地理优秀7205
良好9186
及格a4b
成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的人数共有20+18+4=42.
①若在该样本中,数学成绩优秀率是30%,求a,b的值;
②在地理成绩及格的学生中,已知a≥11,b≥7,求数学成绩优秀人数比及格人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:sin20°sin100°-cos160°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆C1:x2+y2-9=0与圆C2:x2+y2-6x+8y+9=0的公共弦的长为$\frac{24}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=cos2$\frac{x}{2}$-sin2$\frac{x}{2}$的一条对称轴方程是(  )
A.x=-$\frac{π}{2}$B.x=$\frac{π}{4}$C.x=0D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知tanθ=2,则$\frac{cosθ+sinθ}{cosθ-sinθ}$=(  )
A.3B.-3C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=3$\sqrt{2}$cos(x+φ)+sinx,x∈R,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$)的图象过点($\frac{π}{2}$,4),则f(x)的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.两灯塔A,B与海洋观察站C的距离都为a,灯塔A在C的北偏东30°,B在C的南偏东60°,则A,B两灯塔之间距离为(  )
A.2aB.$\sqrt{3}$aC.$\sqrt{2}$aD.a

查看答案和解析>>

同步练习册答案