精英家教网 > 高中数学 > 题目详情
已知|
a
|=4,|
b
|=8,
a
b
的夹角为120°,则|4
a
-2
b
|=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用数量积的定义及其运算性质即可得出.
解答: 解:∵|
a
|=4,|
b
|=8,
a
b
的夹角为120°,
a
b
=|
a
|
 |
b
|cos120°
=4×8×(-
1
2
)
=-16.
∴|4
a
-2
b
|=
16
a
2
+4
b
2
-16
a
b
=
16×42+4×82-16×(-16)
=16
3

故答案为:16
3
点评:本题考查了数量积的定义及其运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,记Sn是它的前n项和,若S2=16,S4=24,求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+lnx,其中a为常数,e为自然对数的底数.
(Ⅰ)当a=-1时,求f(x)的最大值;
(Ⅱ)若在区间(0,e)上的最大值为-3,求a的值;
(Ⅲ)当a=1时,判断方程|f(x)|=
lnx
x
+
1
2
是否有实根?若无实根请说明理由,若有实根请给出根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC是圆O的内接三角形,PA是圆O的切线,PB交AC于点E,交圆O于点D,已知PE=PA,∠ABC=60°,PD=1,BD=8.
(1)求证:∠AEP=60°;
(2)求BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,a+b=2,则y=
1
a
+
4
b
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,点C、M在以AB为直径的⊙O上,OM∥AC,PA垂直于⊙O所在平面,∠CBA=30°,PA=AB=2,
(1)求证:平面PAC⊥平面PCB;
(2)设二面角M-BP-C的大小为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=x+
2
x
,x∈(-∞,0)∪(0,+∞)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线x2=4y上一个动点,过点P作圆x2+(y-4)2=1的两条切线,切点分别为M,N,则线段MN长度的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①设p、q为简单命题,则“p且q”为假是“p或q为假的必要而不充分条件;
②函数x∈(0,4)的极小值为a,极大值为{1,2,3,…,10};
③奇函数f(x)在[-1,0]单调减函数,又α,β为锐角三角形的内角,则f(sinα)<f(cosβ);
④数列{an}的前n项和为Sn,且Sn=an-1(a∈R),则{an}为等差或等比数列;
⑤若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
其中真命题的序号为
 
(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案