精英家教网 > 高中数学 > 题目详情
14.已知数列{an},{bn}满足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{{a}_{n}}^{2}}$,n∈N*,则b2016=$\frac{2016}{2017}$.

分析 数列{an},{bn}满足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{{a}_{n}}^{2}}$,n∈N*,可得b1=1-a1=$\frac{1}{2}$,bn+1=$\frac{{b}_{n}}{1-(1-{b}_{n})^{2}}$=$\frac{1}{2-{b}_{n}}$.求出b2,b3,b4,…,猜想:bn=$\frac{n}{n+1}$,即可得出.

解答 解:∵数列{an},{bn}满足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{{a}_{n}}^{2}}$,n∈N*
∴b1=1-a1=$\frac{1}{2}$,bn+1=$\frac{{b}_{n}}{1-(1-{b}_{n})^{2}}$=$\frac{1}{2-{b}_{n}}$.
∴b2=$\frac{2}{3}$,b3=$\frac{3}{4}$,b4=$\frac{4}{5}$,…,
猜想:bn=$\frac{n}{n+1}$,
经过验证:bn+1=$\frac{n+1}{n+2}$成立.
则b2016=$\frac{2016}{2017}$.
故答案为:$\frac{2016}{2017}$.

点评 本题考查了递推关系、猜想与证明,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\frac{{{e^{-x}}}}{a}+\frac{a}{{{e^{-x}}}}$(a>0)是定义在R上的偶函数,
(1)求实数a的值;
(2)判断并证明函数f(x)在[0,+∞)的单调性;
(3)若关于x的不等式f(x)-m2+m≥0的解集为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足:a1a2…an=1-an,n∈N*
(1)证明:{$\frac{1}{1-{a}_{n}}$}是等差数列,并求数列{an}的通项公式;
(2)记Tn=$\left\{\begin{array}{l}{1(n=1)}\\{{{a}_{1}a}_{2}…{a}_{n-1}(n≥2)}\end{array}\right.$(n∈N*),Sn=T1+T2+…+Tn,证明:$\frac{1}{2}$≤S2n-Sn$<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.当x>1时,lnx+$\frac{1}{x}$与1的大小关系为lnx+$\frac{1}{x}$>1(填“>“或“<“).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=5,an=an-1+3.这个数列是否是等差数列?若是,请写出它的公差d和通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在(1+x)+(1+x)2+…+(1+x)9的展开式中,x2项的系数是120(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知某直角三角形一直角边上有一点A(-2,3),且直角顶点为C(1,0),求另一条直角边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A,B是椭圆3x2+y2=m(m>0)上不同两点,线段AB的中点为N(1,3).则m的取值范围为(12,+∞),AB所在的直线方程为y=-x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

同步练习册答案