精英家教网 > 高中数学 > 题目详情
9.函数y=$\frac{1}{2}$cosx,x∈[-$\frac{π}{3}$,$\frac{2π}{3}$]的值域是(  )
A.[-1,$\frac{1}{2}$]B.[-$\frac{1}{4}$,$\frac{1}{2}$]C.[-$\frac{\sqrt{3}}{4}$,$\frac{1}{4}$]D.[-$\frac{1}{2}$,1]

分析 由条件利用余弦函数的定义域和值域,求得结论.

解答 解:由x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],可得cosx∈[-$\frac{1}{2}$,1],
故选:D.

点评 本题主要考查余弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某位同学在2015年5月进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了5月1日至5月5日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如下数据:
日    期5月1日5月2日5月3日5月4日5月5日
平均气温x(°C)91012118
销量y(杯)2325302621
(1)若从这五组数据中随机抽出2组,求抽出的2组数据不是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设△ABC内角A,B,C的对边分别为a,b,c,已知A=60°,b=16,S△ABC=220$\sqrt{3}$,则a的值是(  )
A.20$\sqrt{6}$B.75C.51D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆x2+y2=4,圆外有一点M(3,3),点N在圆上运动,O为坐标原点,以线段OM,ON为邻边作平行四边形MONP,则P的轨迹方程是(x-3)2+(y-3)2=4(点($3+\sqrt{2},3+\sqrt{2}$)和($3-\sqrt{2},3-\sqrt{2}$))除外.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列$\sqrt{2}$,2,x,2$\sqrt{2}$,$\sqrt{10}$,2$\sqrt{3}$,…中,x=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知tan(α+β)=$\frac{1}{3}$,tanβ=-2,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinα+cosα=$\frac{\sqrt{2}}{3}$,α∈(0,π).
(1)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值.
(1)若cosβ+sinβ=-$\frac{\sqrt{2}}{2}$,β∈(0,π),求角α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若菱形的周长为l,面积为S,则菱形的较小内角的正弦为$\frac{8s}{{l}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若2cos2α=sin(α-$\frac{π}{4}$),且α∈($\frac{π}{2}$,π),则cos2α的值为(  )
A.-$\frac{7}{8}$B.-$\frac{\sqrt{15}}{8}$C.1D.$\frac{\sqrt{15}}{8}$

查看答案和解析>>

同步练习册答案