精英家教网 > 高中数学 > 题目详情
9.设函数f(x)的导函数是f′(x),对任意x∈R,都有f′(x)>f(x),则(  )
A.2014f(ln2015)≥2015f(ln2014)B.2014f(ln2015)≤2015f(ln2014)
C.2014f(ln2015)>2015f(ln2014)D.2014f(ln2015)<2015f(ln2014)

分析 构造函数令g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数可判断g(x)的单调性,由单调性可得g(ln2014)与g(ln2015)的大小关系,整理即可得到答案.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
因为对任意x∈R都有f′(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又ln2014<ln2015,所以g(ln2015)>g(ln2014),即$\frac{f(ln2015)}{{e}^{ln2015}}$>$\frac{f(ln2014)}{{e}^{ln2014}}$,
所以 2014f(ln2015)>2015f(ln2014),
故选:C

点评 本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.计算${(lg5)^2}+lg2•lg50+{(\frac{4}{9})^{-\;\frac{1}{2}}}$的值为(  )
A.$\frac{7}{2}$B.$\frac{5}{2}$C.$\frac{5}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若抛物线y=ax2的准线方程为y=-1,则实数a的值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧拉长6cm,则力所做的功为(  )
A.0.12 JB.0.18 JC.0.26 JD.0.28 J

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=$\frac{π}{6}$,a=1,b=2,则c=(  )
A.$1或\sqrt{3}$B.$2或\sqrt{3}$C.$\sqrt{3}-1$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角β的终边在直线$y=-\sqrt{3}x$上,且-180°≤β≤180°,则β=-60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=x2-2x-11在x=2处的切线方程为y=f(x),数列{an}满足an=f(n).
(1)求数列{an}的通项公式及前n项和Sn
(2)求nSn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;            
(2)设bn=$\frac{a_n}{{{2^{n-1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}{x^3}$-ax+1(a∈R).
(1)当x=1时,f(x)取得极值,求a的值;
(2)求f(x)在[0,1]上的最小值.

查看答案和解析>>

同步练习册答案