精英家教网 > 高中数学 > 题目详情
2.已知随机变量X~N(1,σ2),若P(0<X<2)=0.4,则P(X≤0)=(  )
A.0.6B.0.4C.0.3D.0.2

分析 随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据曲线的对称性得到小于等于0的概率和大于等于2的概率是相等的得到结果.

解答 解:随机变量ξ服从正态分布N(1,σ2),
∴曲线关于x=1对称,
∴P(X≤0)=$\frac{1}{2}$(1-P(0<X<2))=$\frac{1}{2}$×(1-0.4)=0.3.
故选:C.

点评 本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R),若|f4(x)|在[-1,1]上的最大值为$\frac{1}{2}$,则a+b=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知变量X服从正态分布N(2,4),下列概率与P(X≤0)相等的是(  )
A.P(X≥2)B.P(X≥4)C.P(0≤X≤4)D.1-P(X≥4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$sin({\frac{π}{4}-x})=\frac{3}{5}$,则sin2x=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=a|x|-3a-1,若命题?x0∈[-1,1],使f(x0)=0是真命题,则实数a的取值范围为(  )
A.(-∞,-$\frac{1}{2}$]B.(-∞,-$\frac{1}{2}$]∪(0,+∞)C.[-$\frac{1}{2}$,-$\frac{1}{3}$]D.(-∞,-$\frac{1}{3}$)∪[-$\frac{1}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某市教育局在甲,乙,丙三所学校对学生进行法律宣传教育,三所学校的学生人数分别为2400名,1600名,2000名,为了解这次教育活动的效果,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙学校中抽取了20名,若随机变量ξ~N($\frac{n}{15}$,σ2),P(ξ>7)=$\frac{6}{n}$,P(1<ξ<7)=$\frac{4}{a+2b}$(a>0,b>0),则a2+4b2+2$\sqrt{ab}$的最大值是$\frac{101}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,$BC=2\sqrt{2}$,AC=2,且$cos({A+B})=-\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求AB的长度; 
(Ⅱ)若f(x)=sin(2x+C),求y=f(x)与直线$y=\frac{{\sqrt{3}}}{2}$相邻交点间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正项等比数列{an}中,a1a3=1,a2+a3=$\frac{4}{3}$,则$\underset{lim}{n→∞}$(a1+a2+…+an)=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知tanA+tanB+tanAtanB=1,若△ABC最大边的长为$\sqrt{6}$,则其外接圆的半径为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案