精英家教网 > 高中数学 > 题目详情
11.如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,以下四个结论中正确的是(  )
A.直线MN与DC1互相垂直B.直线AM与BN互相平行
C.直线MN与BC1所成角为90°D.直线MN垂直于平面A1BCD1

分析 在A中,由MN∥D1C,D1C⊥DC1,得直线MN与DC1互相垂直,故A正确;在B中,直线AM与BN相交;在C中:直线MN与BC1所成角为60°;在D中,MN∥平面A1BCD1

解答 解:在A中:∵正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,
∴MN∥D1C,
在B中:∵D1C⊥DC1,∴直线MN与DC1互相垂直,故A正确;
取DD1中点E,连结AE,则BN∥AE,由AE∩AM=A,得直线AM与BN相交,故B错误;
在C中:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则M(0,1,2),N(0,2,1),B(2,2,0),C1(0,2,2),
$\overrightarrow{MN}$=(0,1,-1),$\overrightarrow{B{C}_{1}}$=(-2,0,2),
cos<$\overrightarrow{MN},\overrightarrow{B{C}_{1}}$>=$\frac{\overrightarrow{MN}•\overrightarrow{B{C}_{1}}}{|\overrightarrow{MN}|•|\overrightarrow{B{C}_{1}}|}$=$\frac{-2}{\sqrt{2}×\sqrt{8}}$=-$\frac{1}{2}$,
∴直线MN与BC1所成角为60°,故C错误;
在D中:∵$\overrightarrow{MN}$=(0,1,-1),A1(2,0,2),$\overrightarrow{{A}_{1}B}$=(0,2,-2),
∴$\overrightarrow{MN}$∥$\overrightarrow{{A}_{1}B}$,∵MN?平面A1BCD1,A1B?平面A1BCD1
∴MN∥平面A1BCD1,故D错误.
故选:A.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点O为坐标原点,F为椭圆C:$\frac{x^2}{3}+{y^2}$=1的左焦点,点P、Q在椭圆上,点P、Q、R满足$\overrightarrow{OF}$•$\overrightarrow{PQ}$=0,$\overrightarrow{QR}$+2$\overrightarrow{PQ}$=$\overrightarrow{0}$,则$\sqrt{3}|{PF}|+|{OR}$|的最大值为(  )
A.6B.$\sqrt{3}$(1+$\sqrt{2}$+$\sqrt{3}$)C.3+3$\sqrt{2}$D.3+3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.线性回归直线方程y=bx+a恒过样本中心$(\overline x,\overline y)$,且至少经过一个样本点
C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow a,\overrightarrow b$满足:$\left|{\overrightarrow a}\right|=2,\left|{\overrightarrow b}\right|=1,\left|{\overrightarrow a-\overrightarrow b}\right|=\sqrt{6}$,则$\left|{\overrightarrow a+\overrightarrow b}\right|$(  )
A.$\sqrt{3}$B.$\sqrt{10}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线方程y=$\sqrt{3}$x+2,则该直线的倾斜角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四梭推 P-ABCD中,CD⊥平面PAD,AB∥CD,CD=4AB,AC⊥PA,M为线段CP上一点.
(1)求证:平面ACD⊥平面PAM;
(2)若PM=$\frac{1}{4}$PC,求证:MB∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知O是锐角△ABC的外接圆圆心,∠A=60°,$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=m•$\overrightarrow{OA}$,则m的值为(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a是方程x+lgx=4的根,b是方程x+10x=4的根,函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2+(a+b-4)x,若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(  )
A.[$\sqrt{2}$,+∞)B.[2,+∞)C.(0,2]D.[-$\sqrt{2}$,-1]∪[$\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足(1-i2)z=1+i3,则z的虚部为(  )
A.0B.$\frac{1}{2}$C.1D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案