精英家教网 > 高中数学 > 题目详情
2.如图,AB是⊙O的直径,点C,D是半圆弧AB的三等分点,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$.(用a,b表示)

分析 连结CD、OD,由圆的性质与等腰三角形的性质,证出CD∥AB且AC∥DO,得到四边形ACDO为平行四边形,再根据题设条件即可得到用表示向量的式子.

解答 解:如图示:

连结CD、OD,
∵点C、D是半圆弧AB的两个三等分点,
∴$\widehat{AC}$=$\widehat{BD}$,可得CD∥AB,∠CAD=∠DAB=$\frac{1}{3}$×90°=30°,
∵OA=OD,
∴∠ADO=∠DAO=30°,
由此可得∠CAD=∠DAO=30°,
∴AC∥DO.
∴四边形ACDO为平行四边形,
∴$\overrightarrow{AD}$=$\overrightarrow{AO}$+$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$,
故答案为:$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$.

点评 本题给出半圆弧的三等分点,求向量的线性表示式.着重考查了圆周角定理、平行四边形的判定与向量的线性运算等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往 A,B两地区收割水稻,其中30台派往 A地区,20台派往 B地区,两地区与该农机公司商定的每天租赁价格如表:
每台甲型收割机的租金每台乙型收割机的租金
A地区1800元1600元
B地区1600元1200元
(1)设派往 A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;
(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=${∫}_{0}^{π}$$\sqrt{2}$cos(x-$\frac{π}{4}$)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)4中展开式中含x项的系数是(  )
A.-32B.32C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),直线x+$\sqrt{2}$y=0与椭圆C的一个交点为(-$\sqrt{2}$,1),点A是椭圆C上的任意一点,延长AF1交椭圆C于点B,连接BF2,AF2
(1)求椭圆C的方程;
(2)求△ABF2的内切圆的最大周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在${({x-\frac{3}{{\sqrt{x}}}})^5}$的二项展开式中,x2的系数为90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an},a1=1,an+1=2an+(-1)n(n∈N*).
(1)是否存在实数λ,使得数列{a2n-1+λ}成等比数列,若存在,求出λ的值,若不存在,请说明理由;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.化简$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$的结果是1-$\frac{1}{2}$sin2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示的阴影部分可用二元一次不等式组表示为$\left\{\begin{array}{l}{x-y≥0}\\{x+y>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y≤0}\\{x+y>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设i为虚数单位,已知${z_1}=\frac{1-i}{1+i},{z_2}=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,则|z1|,|z2|的大小关系是(  )
A.|z1|<|z2|B.|z1|=|z2|C.|z1|>|z2|D.无法比较

查看答案和解析>>

同步练习册答案