精英家教网 > 高中数学 > 题目详情
14.化简$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$的结果是1-$\frac{1}{2}$sin2θ.

分析 根据立方和公式a3+b3=(a+b)(a2-ab+b2)以及同角的三角形函数的关系,化简即可.

解答 解:$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$=sin2θ+cos2θ-sinθcosθ=1-$\frac{1}{2}$sin2θ,
故答案为:1-$\frac{1}{2}$sin2θ.

点评 本题考查了同角的三角函数的关系以及二倍角公式和立方和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow{AB}$=(1,m),$\overrightarrow{BC}$=(2m,-1),其中m∈[-1,+∞),则$\overrightarrow{AB}$•$\overrightarrow{AC}$的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在公差为d的等差数列{an}中,已知a1=10,且a1,a2+1,a3+2成等比数列
(I)求d,an
(Ⅱ)求|a1|+|a2|+|a3|+…+|an|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,AB是⊙O的直径,点C,D是半圆弧AB的三等分点,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$.(用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\frac{2{x}^{2}}{{e}^{x}}$+$\frac{mx}{{e}^{x}}$,m∈R.
(1)若f(x)在x=0处取得极值,确定m的值,并求此时曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)在[2,+∞)上为减函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.向量$\overrightarrow{a}$=(4,-3),$\overrightarrow{b}$=(0,5),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角平分线上的单位向量是(  )
A.(2,1)B.(1,2)
C.($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)或(-$\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l的参数方程为$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F在直线l上.
(Ⅰ)若直线l与曲线C交于A、B两点.求|FA|•|FB|的值;
(Ⅱ)设曲线C的内接矩形的周长为P,求P的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知log63=a,则log612=2-a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知各项均为正数的数列{an}满足an+1=$\frac{1}{2}$an+$\frac{1}{4}$,a1=$\frac{7}{2}$,Sn为数列{an}的前n项和,若对于任意的n∈N*,不等式$\frac{4k}{12+n-2{S}_{n}}$≥1恒成立,则实数k的取值范围为$k≥\frac{3}{2}$.

查看答案和解析>>

同步练习册答案