精英家教网 > 高中数学 > 题目详情
18.已知各项均为正数的数列{an}满足an+1=$\frac{1}{2}$an+$\frac{1}{4}$,a1=$\frac{7}{2}$,Sn为数列{an}的前n项和,若对于任意的n∈N*,不等式$\frac{4k}{12+n-2{S}_{n}}$≥1恒成立,则实数k的取值范围为$k≥\frac{3}{2}$.

分析 由各项均为正数的数列{an}满足an+1=$\frac{1}{2}$an+$\frac{1}{4}$,a1=$\frac{7}{2}$,变形为:an+1-$\frac{1}{2}$=$\frac{1}{2}$(an-$\frac{1}{2}$),利用等比数列的通项公式及其前n项和公式可得:an,Sn
不等式$\frac{4k}{12+n-2{S}_{n}}$≥1化为:$k≥\frac{3}{{2}^{n}}$,再利用数列的单调性即可得出.

解答 解:∵各项均为正数的数列{an}满足an+1=$\frac{1}{2}$an+$\frac{1}{4}$,a1=$\frac{7}{2}$,
∴an+1-$\frac{1}{2}$=$\frac{1}{2}$(an-$\frac{1}{2}$),
∴数列$\{{a}_{n}-\frac{1}{2}\}$成等比数列,首项为3,公比为$\frac{1}{2}$.
∴an-$\frac{1}{2}$=$3×(\frac{1}{2})^{n-1}$,可得:an=$\frac{1}{2}$+$3×(\frac{1}{2})^{n-1}$,
Sn=$\frac{n}{2}$+3×$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=$\frac{n}{2}$+6$(1-\frac{1}{{2}^{n}})$,
∴12+n-2Sn=$\frac{12}{{2}^{n}}$.
∴不等式$\frac{4k}{12+n-2{S}_{n}}$≥1化为:$k≥\frac{3}{{2}^{n}}$,
∵数列$\{\frac{3}{{2}^{n}}\}$单调递减,
∴$k≥\frac{3}{2}$.
故答案为:$k≥\frac{3}{2}$.

点评 本题考查了等比数列的通项公式及其前n项和公式、递推关系、数列的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.化简$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$的结果是1-$\frac{1}{2}$sin2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知cos($θ-\frac{π}{6}$)+sinθ=$\frac{4\sqrt{3}}{5}$,则sin(θ+$\frac{7π}{6}$)的值是(  )
A.$\frac{4}{5}$B.$\frac{4\sqrt{3}}{5}$C.-$\frac{4}{5}$D.-$\frac{4\sqrt{3}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设i为虚数单位,已知${z_1}=\frac{1-i}{1+i},{z_2}=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,则|z1|,|z2|的大小关系是(  )
A.|z1|<|z2|B.|z1|=|z2|C.|z1|>|z2|D.无法比较

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx的反函数为g(x).
(Ⅰ)若直线l:y=k1x是函数y=f(-x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;
(Ⅱ)设a,b∈R,且a≠b,P=g($\frac{a+b}{2}$),Q=$\frac{g(a)-g(b)}{a-b}$,R=$\frac{g(a)+g(b)}{2}$,试比较P,Q,R的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若x,y满足不等式组$\left\{\begin{array}{l}y-2≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,则$\frac{y}{x}$的最大值是(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=1,点(an,an+1)在函数y=3x+2图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,平面四边形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,求
(Ⅰ)∠ADB;
(Ⅱ)△ADC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A(1,1),B(5,5),直线l1:x=0和l2:3x+2y-2=0,若点P1、P2分别是l1、l2上与A、B两点距离的平方和最小的点,则|$\overrightarrow{{P}_{1}{P}_{2}}$|等于(  )
A.1B.2C.$\sqrt{10}$D.$\frac{\sqrt{173}}{5}$

查看答案和解析>>

同步练习册答案