精英家教网 > 高中数学 > 题目详情
7.如图,平面四边形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,求
(Ⅰ)∠ADB;
(Ⅱ)△ADC的面积S.

分析 (I)在△BCD中由正弦定理解出BD,在△ABD中,由余弦定解出cos∠ADB;
(II)代入三角形的面积公式计算.

解答 解:(Ⅰ)在△BCD中,由正弦定理得:$\frac{BD}{sin∠BCD}=\frac{CD}{sin∠CBD}$,
即$\frac{BD}{\frac{\sqrt{3}}{2}}=\frac{\sqrt{3}}{\frac{1}{2}}$,解得BD=3.
在△ABD中,由余弦定理得:cos∠ADB=$\frac{A{D}^{2}+B{D}^{2}-A{B}^{2}}{2AD•BD}$=$\frac{(2\sqrt{2})^{2}+{3}^{2}-(\sqrt{5})^{2}}{2×2\sqrt{2}×3}$=$\frac{\sqrt{2}}{2}$.
∴∠ADB=45°.
(Ⅱ)∵∠CBD=30°,∠BCD=120°,∴∠CDB=30°.
∴sin∠ADC=sin(45°+30°)=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∴S△ACD=$\frac{1}{2}AD$•CDsin∠ADC=$\frac{1}{2}×2\sqrt{2}×\sqrt{3}×\frac{\sqrt{6}+\sqrt{2}}{4}$=$\frac{3+\sqrt{3}}{2}$.

点评 本题考查了正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知log63=a,则log612=2-a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知各项均为正数的数列{an}满足an+1=$\frac{1}{2}$an+$\frac{1}{4}$,a1=$\frac{7}{2}$,Sn为数列{an}的前n项和,若对于任意的n∈N*,不等式$\frac{4k}{12+n-2{S}_{n}}$≥1恒成立,则实数k的取值范围为$k≥\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知四边形ABCD满足|AB|=|AD|,|CD|=$\sqrt{3}$且∠BAD=60°,$\overrightarrow{AC}$-$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AD}$,那么四边形ABCD的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出的k值为(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-c)cosA=acosC.
(Ⅰ)求角A的大小
(Ⅱ)若a=3,求△ABC的周长最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\frac{2i-1}{1+ai}\;(a∈R)$是纯虚数,则a=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在等比数列{an}中,a1+2a2=1,a${\;}_{3}^{2}$=2a2a5
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足2Sn=4an-1.则数列{$\frac{1}{lo{g}_{2}{a}_{n+3}{lo{g}_{2}{a}_{n+2}$}的前100项和为(  )
A.$\frac{97}{100}$B.$\frac{98}{99}$C.$\frac{99}{100}$D.$\frac{100}{101}$

查看答案和解析>>

同步练习册答案